Some stable plethysms
HTML articles powered by AMS MathViewer
- by Stacey Law and Yuji Okitani;
- Proc. Amer. Math. Soc. 151 (2023), 4557-4564
- DOI: https://doi.org/10.1090/proc/16556
- Published electronically: August 18, 2023
- HTML | PDF | Request permission
Abstract:
In this note, we prove some new stability results for plethysm coefficients. As special cases, we verify a conjecture of Wildon, and show the stability of sequences recently predicted by Bessenrodt, Bowman and Paget [Trans. Amer. Math. Soc. 375 (2022), pp. 5151โ5194] to be weakly increasing.References
- Christine Bessenrodt, Chris Bowman, and Rowena Paget, The classification of multiplicity-free plethysms of Schur functions, Trans. Amer. Math. Soc. 375 (2022), no.ย 7, 5151โ5194. MR 4439501, DOI 10.1090/tran/8642
- Michel Brion, Stable properties of plethysm: on two conjectures of Foulkes, Manuscripta Math. 80 (1993), no.ย 4, 347โ371. MR 1243152, DOI 10.1007/BF03026558
- Laura Colmenarejo, Stability properties of the plethysm: a combinatorial approach, Discrete Math. 340 (2017), no.ย 8, 2020โ2032. MR 3648227, DOI 10.1016/j.disc.2016.10.009
- Christophe Carrรฉ and Jean-Yves Thibon, Plethysm and vertex operators, Adv. in Appl. Math. 13 (1992), no.ย 4, 390โ403. MR 1190119, DOI 10.1016/0196-8858(92)90018-R
- Suzie C. Dent and Johannes Siemons, On a conjecture of Foulkes, J. Algebra 226 (2000), no.ย 1, 236โ249. MR 1749887, DOI 10.1006/jabr.1999.8169
- Melanie de Boeck, Rowena Paget, and Mark Wildon, Plethysms of symmetric functions and highest weight representations, Trans. Amer. Math. Soc. 374 (2021), no.ย 11, 8013โ8043. MR 4328690, DOI 10.1090/tran/8481
- H. O. Foulkes, Plethysm of $S$-functions, Philos. Trans. Roy. Soc. London Ser. A 246 (1954), 555โ591. MR 62098, DOI 10.1098/rsta.1954.0008
- Stacey Law and Yuji Okitani, On plethysms and Sylow branching coefficients, Algebr. Comb. 6 (2023), no.ย 2, 321โ357. MR 4591590, DOI 10.5802/alco.262
- T. M. Langley and J. B. Remmel, The plethysm $s_\lambda [s_\mu ]$ at hook and near-hook shapes, Electron. J. Combin. 11 (2004), no.ย 1, Research Paper 11, 26. MR 2035305, DOI 10.37236/1764
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, 2015. With contribution by A. V. Zelevinsky and a foreword by Richard Stanley; Reprint of the 2008 paperback edition [ MR1354144]. MR 3443860
- Rowena Paget and Mark Wildon, Generalized Foulkes modules and maximal and minimal constituents of plethysms of Schur functions, Proc. Lond. Math. Soc. (3) 118 (2019), no.ย 5, 1153โ1187. MR 3946719, DOI 10.1112/plms.12210
- Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. MR 1676282, DOI 10.1017/CBO9780511609589
- Richard P. Stanley, Positivity problems and conjectures in algebraic combinatorics, Mathematics: frontiers and perspectives, Amer. Math. Soc., Providence, RI, 2000, pp.ย 295โ319. MR 1754784
- R. M. Thrall, On symmetrized Kronecker powers and the structure of the free Lie ring, Amer. J. Math. 64 (1942), 371โ388. MR 6149, DOI 10.2307/2371691
Bibliographic Information
- Stacey Law
- Affiliation: Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge CB3 0WB, United Kingdom
- MR Author ID: 1268279
- ORCID: 0000-0001-7936-0938
- Email: swcl2@cam.ac.uk
- Yuji Okitani
- Affiliation: Department of Mathematics, University of California, Berkeley, California 94720
- ORCID: 0009-0006-7415-1217
- Email: yuji_okitani@berkeley.edu
- Received by editor(s): September 28, 2022
- Published electronically: August 18, 2023
- Communicated by: Martin Liebeck
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 4557-4564
- MSC (2020): Primary 05E05, 05E10
- DOI: https://doi.org/10.1090/proc/16556
- MathSciNet review: 4634863