$p$-adic interpolation of orbits under rational maps
HTML articles powered by AMS MathViewer
- by Jason P. Bell and Xiao Zhong;
- Proc. Amer. Math. Soc. 151 (2023), 4661-4672
- DOI: https://doi.org/10.1090/proc/16591
- Published electronically: August 18, 2023
- HTML | PDF | Request permission
Abstract:
Let $L$ be a field of characteristic zero, let $h:\mathbb {P}^1\to \mathbb {P}^1$ be a rational map defined over $L$, and let $c\in \mathbb {P}^1(L)$. We show that there exists a finitely generated subfield $K$ of $L$ over which both $c$ and $h$ are defined along with an infinite set of inequivalent non-archimedean completions $K_{\mathfrak {p}}$ for which there exists a positive integer $a=a(\mathfrak {p})$ with the property that for $i\in \{0,\ldots ,a-1\}$ there exists a power series $g_i(t)\in K_{\mathfrak {p}}[[t]]$ that converges on the closed unit disc of $K_{\mathfrak {p}}$ such that $h^{an+i}(c)=g_i(n)$ for all sufficiently large $n$. As a consequence we show that the dynamical Mordell-Lang conjecture holds for split self-maps $(h,g)$ of $\mathbb {P}^1 \times X$ with $g$ an étale self-map of a quasiprojective variety $X$.References
- Ekaterina Amerik, Existence of non-preperiodic algebraic points for a rational self-map of infinite order, Math. Res. Lett. 18 (2011), no. 2, 251–256. MR 2784670, DOI 10.4310/MRL.2011.v18.n2.a5
- Ekaterina Amerik, Some applications of $p$-adic uniformization to algebraic dynamics, Rational points, rational curves, and entire holomorphic curves on projective varieties, Contemp. Math., vol. 654, Amer. Math. Soc., Providence, RI, 2015, pp. 3–21. MR 3477538, DOI 10.1090/conm/654/13213
- Alan F. Beardon, Iteration of rational functions, Graduate Texts in Mathematics, vol. 132, Springer-Verlag, New York, 1991. Complex analytic dynamical systems. MR 1128089, DOI 10.1007/978-1-4612-4422-6
- J. P. Bell, D. Ghioca, and T. J. Tucker, The dynamical Mordell-Lang problem for étale maps, Amer. J. Math. 132 (2010), no. 6, 1655–1675. MR 2766180, DOI 10.1353/ajm.2010.a404144
- Jason Pierre Bell, Dragos Ghioca, and Thomas John Tucker, Applications of $p$-adic analysis for bounding periods for subvarieties under étale maps, Int. Math. Res. Not. IMRN 11 (2015), 3576–3597. MR 3373060, DOI 10.1093/imrn/rnu046
- Jason P. Bell, Dragos Ghioca, and Thomas J. Tucker, The dynamical Mordell-Lang conjecture, Mathematical Surveys and Monographs, vol. 210, American Mathematical Society, Providence, RI, 2016. MR 3468757, DOI 10.1090/surv/210
- Jason P. Bell, Matthew Satriano, and Susan J. Sierra, On a dynamical Mordell-Lang conjecture for coherent sheaves, J. Lond. Math. Soc. (2) 96 (2017), no. 1, 28–46. MR 3687938, DOI 10.1112/jlms.12050
- Robert L. Benedetto, Dragos Ghioca, Benjamin Hutz, Pär Kurlberg, Thomas Scanlon, and Thomas J. Tucker, Periods of rational maps modulo primes, Math. Ann. 355 (2013), no. 2, 637–660. MR 3010142, DOI 10.1007/s00208-012-0799-8
- Robert L. Benedetto, Dragos Ghioca, Pär Kurlberg, and Thomas J. Tucker, A case of the dynamical Mordell-Lang conjecture, Math. Ann. 352 (2012), no. 1, 1–26. With an appendix by Umberto Zannier. MR 2885573, DOI 10.1007/s00208-010-0621-4
- Serge Cantat and Junyi Xie, On degrees of birational mappings, Math. Res. Lett. 27 (2020), no. 2, 319–337. MR 4117078, DOI 10.4310/MRL.2020.v27.n2.a1
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France 48 (1920), 33–94 (French). MR 1504792, DOI 10.24033/bsmf.1003
- P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France 47 (1919), 161–271 (French). MR 1504787, DOI 10.24033/bsmf.998
- Dragos Ghioca and Junyi Xie, The dynamical Mordell-Lang conjecture for skew-linear self-maps. Appendix by Michael Wibmer, Int. Math. Res. Not. IMRN 21 (2020), 7433–7453. MR 4176829, DOI 10.1093/imrn/rny211
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 463157, DOI 10.1007/978-1-4757-3849-0
- M. Herman and J.-C. Yoccoz, Generalizations of some theorems of small divisors to non-Archimedean fields, Geometric dynamics (Rio de Janeiro, 1981) Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983, pp. 408–447. MR 730280, DOI 10.1007/BFb0061427
- G. Julia, Mémoire sur l’iteration des fonctions rationelles, J. Math. Pures Appl. 8 (1918), 47–245.
- John Lesieutre and Daniel Litt, Dynamical Mordell-Lang and automorphisms of blow-ups, Algebr. Geom. 6 (2019), no. 1, 1–25. MR 3904796, DOI 10.14231/ag-2019-001
- Bjorn Poonen, $p$-adic interpolation of iterates, Bull. Lond. Math. Soc. 46 (2014), no. 3, 525–527. MR 3210707, DOI 10.1112/blms/bdu010
- Juan Rivera-Letelier, Dynamique des fonctions rationnelles sur des corps locaux, Astérisque 287 (2003), xv, 147–230 (French, with English and French summaries). Geometric methods in dynamics. II. MR 2040006
- Peter Roquette, Einheiten und Divisorklassen in endlich erzeugbaren Körpern, Jber. Deutsch. Math.-Verein. 60 (1957), no. Abt. 1, 1–21 (German). MR 104652
- Joseph H. Silverman, Integer points, Diophantine approximation, and iteration of rational maps, Duke Math. J. 71 (1993), no. 3, 793–829. MR 1240603, DOI 10.1215/S0012-7094-93-07129-3
- T. Skolem, Ein Verfahren zur Behandlung gewisser exponentialer Gleichungen und diophantischer Gleichungen, Comptes Rendus Congr. Math. Scand. (Stockholm, 1934) 163–188.
- Junyi Xie, Dynamical Mordell-Lang conjecture for birational polynomial morphisms on $\Bbb A^2$, Math. Ann. 360 (2014), no. 1-2, 457–480. MR 3263169, DOI 10.1007/s00208-014-1039-1
- Junyi Xie, The dynamical Mordell-Lang conjecture for polynomial endomorphisms of the affine plane, Astérisque 394 (2017), vi+110 (English, with English and French summaries). MR 3758955
Bibliographic Information
- Jason P. Bell
- Affiliation: Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- MR Author ID: 632303
- ORCID: 0000-0002-1483-9769
- Email: jpbell@uwaterloo.ca
- Xiao Zhong
- Affiliation: Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Email: x48zhong@uwaterloo.ca
- Received by editor(s): February 3, 2022
- Received by editor(s) in revised form: August 28, 2022, and November 16, 2022
- Published electronically: August 18, 2023
- Additional Notes: The authors were supported by NSERC grant RGPIN-2016-03632.
- Communicated by: Rachel Pries
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 4661-4672
- MSC (2020): Primary 37F10, 37P20, 37P55
- DOI: https://doi.org/10.1090/proc/16591
- MathSciNet review: 4634872