A short proof of a strong form of the three dimensional Gaussian product inequality
HTML articles powered by AMS MathViewer
- by Ronan Herry, Dominique Malicet and Guillaume Poly;
- Proc. Amer. Math. Soc. 152 (2024), 403-409
- DOI: https://doi.org/10.1090/proc/16448
- Published electronically: October 13, 2023
- HTML | PDF | Request permission
Abstract:
We prove a strong form of the Gaussian product conjecture in dimension three. Our purely analytical proof simplifies previously known proofs based on combinatorial methods or computer-assisted methods, and allows us to solve the case of any triple of even positive integers which remained open so far.References
- J. Arias-de-Reyna, Gaussian variables, polynomials and permanents, Linear Algebra Appl. 285 (1998), no. 1-3, 107–114. MR 1653495, DOI 10.1016/S0024-3795(98)10125-8
- Dominic Edelmann, Donald Richards, and Thomas Royen, Product inequalities for multivariate Gaussian, gamma, and positively upper orthant dependent distributions, Statist. Probab. Lett. 197 (2023), Paper No. 109820, 8. MR 4554766, DOI 10.1016/j.spl.2023.109820
- Péter E. Frenkel, Pfaffians, Hafnians and products of real linear functionals, Math. Res. Lett. 15 (2008), no. 2, 351–358. MR 2385646, DOI 10.4310/MRL.2008.v15.n2.a12
- Christian Genest and Frédéric Ouimet, A combinatorial proof of the Gaussian product inequality beyond the $\rm MTP_2$ case, Depend. Model. 10 (2022), no. 1, 236–244. MR 4466643, DOI 10.1515/demo-2022-0116
- Christian Genest and Frédéric Ouimet, Miscellaneous results related to the Gaussian product inequality conjecture for the joint distribution of traces of Wishart matrices, J. Math. Anal. Appl. 523 (2023), no. 1, Paper No. 126951, 10. MR 4538422, DOI 10.1016/j.jmaa.2022.126951
- Svante Janson, Gaussian Hilbert spaces, Cambridge Tracts in Mathematics, vol. 129, Cambridge University Press, Cambridge, 1997. MR 1474726, DOI 10.1017/CBO9780511526169
- Samuel Karlin and Yosef Rinott, Total positivity properties of absolute value multinormal variables with applications to confidence interval estimates and related probabilistic inequalities, Ann. Statist. 9 (1981), no. 5, 1035–1049. MR 628759
- Guolie Lan, Ze-Chun Hu, and Wei Sun, The three-dimensional Gaussian product inequality, J. Math. Anal. Appl. 485 (2020), no. 2, 123858, 19. MR 4052574, DOI 10.1016/j.jmaa.2020.123858
- Zhenxia Liu, Zhi Wang, and Xiangfeng Yang, A Gaussian expectation product inequality, Statist. Probab. Lett. 124 (2017), 1–4. MR 3608204, DOI 10.1016/j.spl.2016.12.018
- Dominique Malicet, Ivan Nourdin, Giovanni Peccati, and Guillaume Poly, Squared chaotic random variables: new moment inequalities with applications, J. Funct. Anal. 270 (2016), no. 2, 649–670. MR 3425898, DOI 10.1016/j.jfa.2015.10.013
- Frédéric Ouimet, The Gaussian product inequality conjecture for multinomial covariances, DOI 10.48550/arxiv.2209.01505, 2022.
- Thomas Royen, A simple proof of the Gaussian correlation conjecture extended to some multivariate gamma distributions, Far East J. Theor. Stat. 48 (2014), no. 2, 139–145. MR 3289621
- Oliver Russell and Wei Sun, Moment ratio inequality of bivariate Gaussian distribution and three-dimensional Gaussian product inequality, J. Math. Anal. Appl. 527 (2023), no. 1, Paper No. 127410, 27. MR 4593134, DOI 10.1016/j.jmaa.2023.127410
- Oliver Russell and Wei Sun, An opposite Gaussian product inequality, Statist. Probab. Lett. 191 (2022), Paper No. 109656, 6. MR 4471184, DOI 10.1016/j.spl.2022.109656
- Oliver Russell and Wei Sun, Some new Gaussian product inequalities, J. Math. Anal. Appl. 515 (2022), no. 2, Paper No. 126439, 21. MR 4445681, DOI 10.1016/j.jmaa.2022.126439
- Oliver Russell and Wei Sun, Using sums-of-squares to prove Gaussian product inequalities, DOI 10.48550/arxiv.2205.02127, 2022.
- Ang Wei, Representations of the absolute value function and applications in Gaussian estimates, J. Theoret. Probab. 27 (2014), no. 4, 1059–1070. MR 3278931, DOI 10.1007/s10959-013-0486-z
Bibliographic Information
- Ronan Herry
- Affiliation: IRMAR, UMR CNRS 6625, Université de Rennes, F-35000 Rennes, France
- ORCID: 0000-0001-6313-1372
- Email: ronan.herry@univ-rennes1.fr
- Dominique Malicet
- Affiliation: LAMA, UMR CNRS 8050, Université Gustave Eifffel, F-77420 Champs-sur-Marne, France
- MR Author ID: 1010874
- ORCID: 0000-0003-2768-0125
- Email: dominique.malicet@univ-eiffel.fr
- Guillaume Poly
- Affiliation: IRMAR, UMR CNRS 6625, Université de Rennes, F-35000 Rennes, France
- MR Author ID: 997488
- Email: guillaume.poly@univ-rennes1.fr
- Received by editor(s): November 29, 2022
- Received by editor(s) in revised form: January 11, 2023
- Published electronically: October 13, 2023
- Additional Notes: The first author gratefully acknowledges funding from Centre Henri Lebesgue (ANR-11-LABX-0020-01) through a research fellowship in the framework of the France 2030 program. This work was supported by the ANR grant UNIRANDOM, (ANR-17-CE40-0008)
- Communicated by: Amarjit Singh Budhiraja
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 403-409
- MSC (2020): Primary 60G15; Secondary 39B62
- DOI: https://doi.org/10.1090/proc/16448
- MathSciNet review: 4661091