A surjective summation operator with no Lipschitz right inverse
HTML articles powered by AMS MathViewer
- by Niels Jakob Laustsen, Miek Messerschmidt and Marten Wortel;
- Proc. Amer. Math. Soc. 152 (2024), 253-266
- DOI: https://doi.org/10.1090/proc/16496
- Published electronically: October 24, 2023
- HTML | PDF | Request permission
Abstract:
We show that there exists a Banach space $X$ which contains closed subspaces $Y$ and $Z$ with $Y+Z=X$ such that the associated surjective summation operator $\Sigma \colon Y\times Z\to X$ defined by $\Sigma (y,z)= y+z$ for $y\in Y$ and $z\in Z$ has no Lipschitz right inverse.References
- Israel Aharoni and Joram Lindenstrauss, Uniform equivalence between Banach spaces, Bull. Amer. Math. Soc. 84 (1978), no. 2, 281–283. MR 482074, DOI 10.1090/S0002-9904-1978-14475-9
- Charalambos D. Aliprantis and Kim C. Border, Infinite dimensional analysis, 3rd ed., Springer, Berlin, 2006. A hitchhiker’s guide. MR 2378491
- S. A. Argyros and V. Felouzis, Interpolating hereditarily indecomposable Banach spaces, J. Amer. Math. Soc. 13 (2000), no. 2, 243–294. MR 1750954, DOI 10.1090/S0894-0347-00-00325-8
- Yoav Benyamini and Joram Lindenstrauss, Geometric nonlinear functional analysis. Vol. 1, American Mathematical Society Colloquium Publications, vol. 48, American Mathematical Society, Providence, RI, 2000. MR 1727673, DOI 10.1090/coll/048
- Alistair Bird and Niels Jakob Laustsen, An amalgamation of the Banach spaces associated with James and Schreier, Part I: Banach-space structure, Banach algebras 2009, Banach Center Publ., vol. 91, Polish Acad. Sci. Inst. Math., Warsaw, 2010, pp. 45–76. MR 2777286, DOI 10.4064/bc91-0-3
- Félix Cabello Sánchez and Jesús M. F. Castillo, Homological methods in Banach space theory, Cambridge Studies in Advanced Mathematics, vol. 203, Cambridge University Press, Cambridge; Cambridge University Press, Cambridge, [2023] ©2023. MR 4523233, DOI 10.1017/9781108778312
- V. Ferenczi, Hereditarily finitely decomposable Banach spaces, Studia Math. 123 (1997), no. 2, 135–149. MR 1439026, DOI 10.4064/sm-123-2-135-149
- V. Ferenczi, Quotient hereditarily indecomposable Banach spaces, Canad. J. Math. 51 (1999), no. 3, 566–584. MR 1701326, DOI 10.4153/CJM-1999-026-4
- G. Godefroy and N. J. Kalton, Lipschitz-free Banach spaces, Studia Math. 159 (2003), no. 1, 121–141. Dedicated to Professor Aleksander Pełczyński on the occasion of his 70th birthday. MR 2030906, DOI 10.4064/sm159-1-6
- W. T. Gowers and B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), no. 4, 851–874. MR 1201238, DOI 10.1090/S0894-0347-1993-1201238-0
- Petr Hájek, Vicente Montesinos Santalucía, Jon Vanderwerff, and Václav Zizler, Biorthogonal systems in Banach spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 26, Springer, New York, 2008. MR 2359536
- Marcel de Jeu and Miek Messerschmidt, A strong open mapping theorem for surjections from cones onto Banach spaces, Adv. Math. 259 (2014), 43–66. MR 3197651, DOI 10.1016/j.aim.2014.03.008
- M. I. Kadec and A. Pełczyński, Bases, lacunary sequences and complemented subspaces in the spaces $L_{p}$, Studia Math. 21 (1961/62), 161–176. MR 152879, DOI 10.4064/sm-21-2-161-176
- N. J. Kalton, Lipschitz and uniform embeddings into $\ell _\infty$, Fund. Math. 212 (2011), no. 1, 53–69. MR 2771588, DOI 10.4064/fm212-1-4
- Tosio Kato, Perturbation theory for linear operators, 2nd ed., Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin-New York, 1976. MR 407617
- Joram Lindenstrauss, On nonlinear projections in Banach spaces, Michigan Math. J. 11 (1964), 263–287. MR 167821
- Robert E. Megginson, An introduction to Banach space theory, Graduate Texts in Mathematics, vol. 183, Springer-Verlag, New York, 1998. MR 1650235, DOI 10.1007/978-1-4612-0603-3
- Ulrich Mertins, Verwandte Operatoren, Math. Z. 159 (1978), no. 2, 107–121 (German). MR 477841, DOI 10.1007/BF01214484
- Miek Messerschmidt, Strong Klee-Andô theorems through an open mapping theorem for cone-valued multi-functions, J. Funct. Anal. 275 (2018), no. 12, 3325–3337. MR 3864504, DOI 10.1016/j.jfa.2018.02.008
- Miek Messerschmidt, A pointwise Lipschitz selection theorem, Set-Valued Var. Anal. 27 (2019), no. 1, 223–240. MR 3917365, DOI 10.1007/s11228-017-0455-2
- Miek Messerschmidt, On the Lipschitz decomposition problem in ordered Banach spaces and its connections to other branches of mathematics, Positivity and noncommutative analysis, Trends Math., Birkhäuser/Springer, Cham, [2019] ©2019, pp. 405–423. MR 4042285, DOI 10.1007/978-3-030-10850-2_{2}2
- William Pfaffenberger, On the ideals of strictly singular and inessential operators, Proc. Amer. Math. Soc. 25 (1970), 603–607. MR 264442, DOI 10.1090/S0002-9939-1970-0264442-0
- Albrecht Pietsch, Operator ideals, North-Holland Mathematical Library, vol. 20, North-Holland Publishing Co., Amsterdam-New York, 1980. Translated from German by the author. MR 582655
- Helmut H. Schaefer, Banach lattices and positive operators, Die Grundlehren der mathematischen Wissenschaften, Band 215, Springer-Verlag, New York-Heidelberg, 1974. MR 423039, DOI 10.1007/978-3-642-65970-6
Bibliographic Information
- Niels Jakob Laustsen
- Affiliation: Department of Mathematics and Statistics, Fylde College, Lancaster University, Lancaster, LA1 4YF, United Kingdom
- MR Author ID: 640805
- ORCID: 0000-0003-1658-2415
- Email: n.laustsen@lancaster.ac.uk
- Miek Messerschmidt
- Affiliation: Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, 0028, South Africa
- MR Author ID: 1062554
- Email: miek.messerschmidt@up.ac.za
- Marten Wortel
- Affiliation: Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, 0028, South Africa
- MR Author ID: 889659
- Email: marten.wortel@up.ac.za
- Received by editor(s): December 13, 2022
- Received by editor(s) in revised form: March 14, 2023, March 27, 2023, and March 29, 2023
- Published electronically: October 24, 2023
- Additional Notes: The first author was supported by the National Research Foundation of South Africa (grant number 118513) and the South African National Graduate Academy for Mathematical and Statistical Sciences (grant number UCDP-650). This funding supported a visit in South Africa in September 2022, during which the research presented in this paper was carried out.
- Communicated by: Stephen Dilworth
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 253-266
- MSC (2020): Primary 46M18, 47B01; Secondary 46B03, 46B40
- DOI: https://doi.org/10.1090/proc/16496
- MathSciNet review: 4661078