An extension of Bohr’s theorem
HTML articles powered by AMS MathViewer
- by Ole Fredrik Brevig and Athanasios Kouroupis;
- Proc. Amer. Math. Soc. 152 (2024), 371-374
- DOI: https://doi.org/10.1090/proc/16622
- Published electronically: September 14, 2023
- HTML | PDF | Request permission
Abstract:
The following extension of Bohr’s theorem is established: If a somewhere convergent Dirichlet series $f$ has an analytic continuation to the half-plane $\mathbb {C}_\theta = \{s = \sigma +it\,:\, \sigma >\theta \}$ that maps $\mathbb {C}_\theta$ to $\mathbb {C} \setminus \{\alpha ,\beta \}$ for complex numbers $\alpha \neq \beta$, then $f$ converges uniformly in $\mathbb {C}_{\theta +\varepsilon }$ for any $\varepsilon >0$. The extension is optimal in the sense that the assertion no longer holds should $\mathbb {C}\setminus \{\alpha ,\beta \}$ be replaced with $\mathbb {C}\setminus \{\alpha \}$.References
- Lars V. Ahlfors, An extension of Schwarz’s lemma, Trans. Amer. Math. Soc. 43 (1938), no. 3, 359–364. MR 1501949, DOI 10.1090/S0002-9947-1938-1501949-6
- Harald Bohr, Über das Verhalten von $\zeta (s)$ in der Halbebene $\sigma > 1$, Nachr. Ges. Wiss. Göttingen (1911), 201–208.
- Harald Bohr, Über die gleichmäßige Konvergenz Dirichletscher Reihen, J. Reine Angew. Math. 143 (1913), 203–211 (German). MR 1580881, DOI 10.1515/crll.1913.143.203
- Ole Fredrik Brevig and Karl-Mikael Perfekt, Norms of composition operators on the $H^2$ space of Dirichlet series, J. Funct. Anal. 278 (2020), no. 2, 108320, 33. MR 4030275, DOI 10.1016/j.jfa.2019.108320
- Ole Fredrik Brevig and Karl-Mikael Perfekt, A mean counting function for Dirichlet series and compact composition operators, Adv. Math. 385 (2021), Paper No. 107775, 48. MR 4252762, DOI 10.1016/j.aim.2021.107775
- Julia Gordon and Håkan Hedenmalm, The composition operators on the space of Dirichlet series with square summable coefficients, Michigan Math. J. 46 (1999), no. 2, 313–329. MR 1704209, DOI 10.1307/mmj/1030132413
- Håkan Hedenmalm, Peter Lindqvist, and Kristian Seip, A Hilbert space of Dirichlet series and systems of dilated functions in $L^2(0,1)$, Duke Math. J. 86 (1997), no. 1, 1–37. MR 1427844, DOI 10.1215/S0012-7094-97-08601-4
- Henry Helson, Compact groups and Dirichlet series, Ark. Mat. 8 (1969), 139–143. MR 285858, DOI 10.1007/BF02589554
- Hervé Queffelec and Martine Queffelec, Diophantine approximation and Dirichlet series, Texts and Readings in Mathematics, vol. 80, Hindustan Book Agency, New Delhi; Springer, Singapore, [2020] ©2020. Second edition [of 3099268]. MR 4241378, DOI 10.1007/978-981-15-9351-2
- Hervé Queffélec and Kristian Seip, Approximation numbers of composition operators on the $H^2$ space of Dirichlet series, J. Funct. Anal. 268 (2015), no. 6, 1612–1648. MR 3306358, DOI 10.1016/j.jfa.2014.11.022
- J. F. Ritt, On Certain Points in the Theory of Dirichlet Series, Amer. J. Math. 50 (1928), no. 1, 73–86. MR 1506655, DOI 10.2307/2370849
- E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1986. Edited and with a preface by D. R. Heath-Brown. MR 882550
Bibliographic Information
- Ole Fredrik Brevig
- Affiliation: Department of Mathematics, University of Oslo, 0851 Oslo, Norway
- MR Author ID: 1069722
- Email: obrevig@math.uio.no
- Athanasios Kouroupis
- Affiliation: Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
- Email: athanasios.kouroupis@ntnu.no
- Received by editor(s): March 14, 2023
- Received by editor(s) in revised form: July 4, 2023
- Published electronically: September 14, 2023
- Communicated by: Javad Mashreghi
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 371-374
- MSC (2020): Primary 30B50; Secondary 30B40, 40A30
- DOI: https://doi.org/10.1090/proc/16622
- MathSciNet review: 4661088