On characteristics of the range of kernel operators
HTML articles powered by AMS MathViewer
- by Moritz Gerlach and Jochen Glück;
- Proc. Amer. Math. Soc. 152 (2024), 677-690
- DOI: https://doi.org/10.1090/proc/16531
- Published electronically: November 21, 2023
- HTML | PDF | Request permission
Abstract:
We show that a positive operator between $L^p$-spaces is given by integration against a kernel function if and only if the image of each positive function has a lower semi-continuous representative with respect to a suitable topology. This is a consequence of a new characterization of kernel operators on general Banach lattices as those operators whose range can be represented over a fixed countable set of positive vectors. Similar results are shown to hold for operators that merely dominate a non-trivial kernel operator.References
- Charalambos D. Aliprantis and Owen Burkinshaw, Positive operators, Springer, Dordrecht, 2006. Reprint of the 1985 original. MR 2262133, DOI 10.1007/978-1-4020-5008-4
- Wolfgang Arendt and Alexander V. Bukhvalov, Integral representations of resolvents and semigroups, Forum Math. 6 (1994), no. 1, 111–135. MR 1253180, DOI 10.1515/form.1994.6.111
- A. Blanco, Ideal structure and factorization properties of the regular kernel operators, Positivity 24 (2020), no. 5, 1211–1229. MR 4165707, DOI 10.1007/s11117-019-00728-7
- A. V. Buhvalov, A criterion for integral representability of linear operators, Funkcional. Anal. i Priložen. 9 (1975), no. 1, 51 (Russian). MR 372675
- A. V. Bukhvalov, Integral representation of linear operators, J. Math. Sci. 9 (1978), no. 2, 129–137.
- Nelson Dunford and B. J. Pettis, Linear operations on summable functions, Trans. Amer. Math. Soc. 47 (1940), 323–392. MR 2020, DOI 10.1090/S0002-9947-1940-0002020-4
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 117523
- Moritz Gerlach, On the peripheral point spectrum and the asymptotic behavior of irreducible semigroups of Harris operators, Positivity 17 (2013), no. 3, 875–898. MR 3090698, DOI 10.1007/s11117-012-0210-8
- Moritz Gerlach and Jochen Glück, On a convergence theorem for semigroups of positive integral operators, C. R. Math. Acad. Sci. Paris 355 (2017), no. 9, 973–976 (English, with English and French summaries). MR 3709536, DOI 10.1016/j.crma.2017.07.017
- Moritz Gerlach and Jochen Glück, Convergence of positive operator semigroups, Trans. Amer. Math. Soc. 372 (2019), no. 9, 6603–6627. MR 4024532, DOI 10.1090/tran/7836
- Jochen Glück and Florian G. Martin, Uniform convergence of stochastic semigroups, Israel J. Math. 247 (2022), no. 1, 1–19. MR 4425327, DOI 10.1007/s11856-021-2240-z
- Jacobus J. Grobler and Peter van Eldik, A characterization of the band of kernel operators, Quaestiones Math. 4 (1980/81), no. 2, 89–107. MR 606916, DOI 10.1080/16073606.1980.9631864
- Jacobus J. Grobler and Peter van Eldik, Equimeasurable sets in Riesz spaces, Quaestiones Math. 8 (1985), no. 3, 283–297. MR 833907, DOI 10.1080/16073606.1985.9631917
- Niels Jacob and René L. Schilling, Towards an $L^p$ potential theory for sub-Markovian semigroups: kernels and capacities, Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 4, 1227–1250. MR 2245255, DOI 10.1007/s10114-005-0758-3
- G. Ja. Lozanovskiĭ, On almost integral operators in $KB$-spaces, Vestnik Leningrad. Univ. 21 (1966), no. 7, 35–44 (Russian, with English summary). MR 208375
- W. A. J. Luxemburg and A. C. Zaanen, Riesz spaces. Vol. I, North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1971. MR 511676
- Peter Meyer-Nieberg, Banach lattices, Universitext, Springer-Verlag, Berlin, 1991. MR 1128093, DOI 10.1007/978-3-642-76724-1
- Rainer J. Nagel and Ulf Schlotterbeck, Integraldarstellung regulärer Operatoren auf Banachverbänden, Math. Z. 127 (1972), 293–300 (German). MR 313868, DOI 10.1007/BF01114932
- Hidegorô Nakano, Product spaces of semi-ordered linear spaces, J. Fac. Sci. Hokkaido Univ. Ser. I. 12 (1953), 163–210. MR 62961
- Katarzyna Pichór and Ryszard Rudnicki, Continuous Markov semigroups and stability of transport equations, J. Math. Anal. Appl. 249 (2000), no. 2, 668–685. MR 1781248, DOI 10.1006/jmaa.2000.6968
- Walter Schachermayer, Integral operators on $L^{p}$ spaces. I, Indiana Univ. Math. J. 30 (1981), no. 1, 123–140. MR 600038, DOI 10.1512/iumj.1981.30.30011
- Helmut H. Schaefer, Banach lattices and positive operators, Die Grundlehren der mathematischen Wissenschaften, Band 215, Springer-Verlag, New York-Heidelberg, 1974. MR 423039, DOI 10.1007/978-3-642-65970-6
- A. R. Schep, Kernel operators, Nederl. Akad. Wetensch. Indag. Math. 41 (1979), no. 1, 39–53. MR 528217, DOI 10.1016/1385-7258(79)90008-8
- A. R. Schep, Compactness properties of an operator which imply that it is an integral operator, Trans. Amer. Math. Soc. 265 (1981), no. 1, 111–119. MR 607110, DOI 10.1090/S0002-9947-1981-0607110-7
- Willem K. Vietsch, Abstract kernel operators and compact operators, Ph.D. thesis, Rijks-Universiteit te Leiden, 1979.
- A. C. Zaanen, Riesz spaces. II, North-Holland Mathematical Library, vol. 30, North-Holland Publishing Co., Amsterdam, 1983. MR 704021, DOI 10.1016/S0924-6509(08)70234-4
Bibliographic Information
- Moritz Gerlach
- Affiliation: Universität Potsdam, Institut für Mathematik, Karl–Liebknecht–Straße 24–25, 14476 Potsdam, Germany
- MR Author ID: 962946
- ORCID: 0000-0001-9928-7483
- Email: gerlach@math.uni-potsdam.de
- Jochen Glück
- Affiliation: Bergische Universität Wuppertal, Fakultät für Mathematik und Naturwissenschaften, Gaußstraße 20, 42119 Wuppertal, Germany
- ORCID: 0000-0002-0319-6913
- Email: glueck@uni-wuppertal.de
- Received by editor(s): June 1, 2022
- Received by editor(s) in revised form: February 15, 2023, and May 5, 2023
- Published electronically: November 21, 2023
- Communicated by: Stephen Dilworth
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 677-690
- MSC (2020): Primary 47B34; Secondary 47B65
- DOI: https://doi.org/10.1090/proc/16531
- MathSciNet review: 4683849
Dedicated: Dedicated to Justus