Cotorsion of anti-cyclotomic Selmer groups on average
HTML articles powered by AMS MathViewer
- by Debanjana Kundu and Florian Sprung;
- Proc. Amer. Math. Soc. 152 (2024), 521-535
- DOI: https://doi.org/10.1090/proc/16543
- Published electronically: November 7, 2023
- HTML | PDF | Request permission
Abstract:
For an elliptic curve, we study how many Selmer groups are cotorsion over the anti-cyclotomic $\mathbb {Z}_p$-extension as one varies the prime $p$ or the quadratic imaginary field in question.References
- M. Bertolini and H. Darmon, Iwasawa’s main conjecture for elliptic curves over anticyclotomic $\Bbb Z_p$-extensions, Ann. of Math. (2) 162 (2005), no. 1, 1–64. MR 2178960, DOI 10.4007/annals.2005.162.1
- Massimo Bertolini, Selmer groups and Heegner points in anticyclotomic $\mathbf Z_p$-extensions, Compositio Math. 99 (1995), no. 2, 153–182. MR 1351834
- Manjul Bhargava, Mass formulae for extensions of local fields, and conjectures on the density of number field discriminants, Int. Math. Res. Not. IMRN 17 (2007), Art. ID rnm052, 20. MR 2354798, DOI 10.1093/imrn/rnm052
- Ajit Bhand and M. Ram Murty, Class numbers of quadratic fields, Hardy-Ramanujan J. 42 (2019), 17–25. MR 4221215
- David Brink, Prime decomposition in the anti-cyclotomic extension, Math. Comp. 76 (2007), no. 260, 2127–2138. MR 2336287, DOI 10.1090/S0025-5718-07-01964-3
- Henri Cohen, Francisco Diaz y Diaz, and Michel Olivier, On the density of discriminants of cyclic extensions of prime degree, J. Reine Angew. Math. 550 (2002), 169–209. MR 1925912, DOI 10.1515/crll.2002.071
- H. Cohen and H. W. Lenstra Jr., Heuristics on class groups of number fields, Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983) Lecture Notes in Math., vol. 1068, Springer, Berlin, 1984, pp. 33–62. MR 756082, DOI 10.1007/BFb0099440
- Alina Carmen Cojocaru, On the surjectivity of the Galois representations associated to non-CM elliptic curves, Canad. Math. Bull. 48 (2005), no. 1, 16–31. With an appendix by Ernst Kani. MR 2118760, DOI 10.4153/CMB-2005-002-x
- David A. Cox, Primes of the form $x^2 + ny^2$, 2nd ed., Pure and Applied Mathematics (Hoboken), John Wiley & Sons, Inc., Hoboken, NJ, 2013. Fermat, class field theory, and complex multiplication. MR 3236783, DOI 10.1002/9781118400722
- J. Coates and R. Sujatha, Galois cohomology of elliptic curves, Tata Institute of Fundamental Research Lectures on Mathematics, vol. 88, Published by Narosa Publishing House, New Delhi; for the Tata Institute of Fundamental Research, Mumbai, 2000. MR 1759312
- Noam D. Elkies, The existence of infinitely many supersingular primes for every elliptic curve over $\textbf {Q}$, Invent. Math. 89 (1987), no. 3, 561–567. MR 903384, DOI 10.1007/BF01388985
- Ralph Greenberg, Iwasawa theory for $p$-adic representations, Algebraic number theory, Adv. Stud. Pure Math., vol. 17, Academic Press, Boston, MA, 1989, pp. 97–137. MR 1097613, DOI 10.2969/aspm/01710097
- Ralph Greenberg, Introduction to Iwasawa theory for elliptic curves. Arithmetic algebraic geometry (Park City, UT, 1999), IAS/Park City Math. Ser. 9 (1999), 407–464.
- Jeffrey Hatley, Debanjana Kundu, and Anwesh Ray, Statistics for anticyclotomic Iwasawa invariants of elliptic curves, Preprint, arXiv:2106.01517, 2021.
- Kuniaki Horie and Yoshihiro Ônishi, The existence of certain infinite families of imaginary quadratic fields, J. Reine Angew. Math. 390 (1988), 97–113. MR 953679
- Peter Humphries, The density of square-free integers satisfying a congruence relation, Mathematics Stack Exchange, 2017, URL:https://math.stackexchange.com/q/2093697 (version: 2017-01-12).
- Chan-Ho Kim, personal communication.
- Winfried Kohnen and Ken Ono, Indivisibility of class numbers of imaginary quadratic fields and orders of Tate-Shafarevich groups of elliptic curves with complex multiplication, Invent. Math. 135 (1999), no. 2, 387–398. MR 1666783, DOI 10.1007/s002220050290
- Shin-ichi Kobayashi, Iwasawa theory for elliptic curves at supersingular primes, Invent. Math. 152 (2003), no. 1, 1–36. MR 1965358, DOI 10.1007/s00222-002-0265-4
- Chan-Ho Kim, Robert Pollack, and Tom Weston, On the freeness of anticyclotomic Selmer groups of modular forms, Int. J. Number Theory 13 (2017), no. 6, 1443–1455. MR 3656202, DOI 10.1142/S1793042117500804
- Alain Kraus, Une remarque sur les points de torsion des courbes elliptiques, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 9, 1143–1146 (French, with English and French summaries). MR 1360773
- Matteo Longo and Stefano Vigni, Plus/minus Heegner points and Iwasawa theory of elliptic curves at supersingular primes, Boll. Unione Mat. Ital. 12 (2019), no. 3, 315–347. MR 3989744, DOI 10.1007/s40574-018-0162-4
- J. S. Milne, Arithmetic duality theorems, 2nd ed., BookSurge, LLC, Charleston, SC, 2006. MR 2261462
- Karl Prachar, Über die kleinste quadratfreie Zahl einer arithmetischen Reihe, Monatsh. Math. 62 (1958), 173–176 (German). MR 92806, DOI 10.1007/BF01301288
- Robert Pollack and Tom Weston, On anticyclotomic $\mu$-invariants of modular forms, Compos. Math. 147 (2011), no. 5, 1353–1381. MR 2834724, DOI 10.1112/S0010437X11005318
- Jean-Pierre Serre, Galois properties of finite order points of elliptic curves, Invent. Math. 15 (1971), no. 4, 259–331.
- Jean-Pierre Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math. 54 (1981), 323–401 (French). MR 644559
- Pablo Soberón, Problem-solving methods in combinatorics, Birkhäuser/Springer Basel AG, Basel, 2013. An approach to olympiad problems. MR 3057774, DOI 10.1007/978-3-0348-0597-1
- Nahid Walji, Supersingular distribution on average for congruence classes of primes, Acta Arith. 142 (2010), no. 4, 387–400. MR 2640067, DOI 10.4064/aa142-4-7
- Lawrence C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997. MR 1421575, DOI 10.1007/978-1-4612-1934-7
Bibliographic Information
- Debanjana Kundu
- Affiliation: Fields Institute, University of Toronto, Toronto, Ontario, M5T 3J1, Canada
- MR Author ID: 1409674
- ORCID: 0000-0002-1545-3841
- Email: dkundu@math.toronto.edu
- Florian Sprung
- Affiliation: School of Mathematical and Statistical Sciences, Arizona State University Tempe, Arizona 85287-1804
- MR Author ID: 974355
- Email: florian.sprung@asu.edu
- Received by editor(s): April 19, 2022
- Received by editor(s) in revised form: April 10, 2023, and April 26, 2023
- Published electronically: November 7, 2023
- Additional Notes: The first author was supported by a PIMS Postdoctoral Fellowship. The second author was supported by an NSF grant and a Simons grant.
- Communicated by: Amanda Folsom
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 521-535
- MSC (2020): Primary 11G05, 11R23; Secondary 11R45
- DOI: https://doi.org/10.1090/proc/16543
- MathSciNet review: 4683836