The Borel partition spectrum at successors of singular cardinals
HTML articles powered by AMS MathViewer
- by Will Brian;
- Proc. Amer. Math. Soc. 152 (2024), 855-867
- DOI: https://doi.org/10.1090/proc/16558
- Published electronically: November 7, 2023
- HTML | PDF | Request permission
Abstract:
Assuming that $0^\dagger$ does not exist, we prove that if there is a partition of $\mathbb R$ into $\aleph _\omega$ Borel sets, then there is also a partition of $\mathbb R$ into $\aleph _{\omega +1}$ Borel sets.References
- Andreas Blass, Simple cardinal characteristics of the continuum, Set theory of the reals (Ramat Gan, 1991) Israel Math. Conf. Proc., vol. 6, Bar-Ilan Univ., Ramat Gan, 1993, pp. 63–90. MR 1234278
- W. R. Brian, Completely ultrametrizable spaces and continuous bijections, Topology Proc. 45 (2015), 233–252. MR 3282976
- Will Brian, Covering versus partitioning with Polish spaces, Fund. Math. 260 (2023), no. 1, 21–39. MR 4516183, DOI 10.4064/fm28-5-2022
- W. R. Brian, Partitioning the real line into Borel sets, J. Symb. Log. (to appear), available online at https://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/partitioning-the-real-line-into-borel-sets/DD73C7F01C60594B6C6B039A21227CD7.
- William R. Brian and Arnold W. Miller, Partitions of $2^\omega$ and completely ultrametrizable spaces, Topology Appl. 184 (2015), 61–71. MR 3314898, DOI 10.1016/j.topol.2015.01.014
- Tony Dodd and Ronald Jensen, The covering lemma for $K$, Ann. Math. Logic 22 (1982), no. 1, 1–30. MR 661475, DOI 10.1016/0003-4843(82)90013-4
- A. J. Dodd and R. B. Jensen, The covering lemma for $L[U]$, Ann. Math. Logic 22 (1982), no. 2, 127–135. MR 667224, DOI 10.1016/0003-4843(82)90018-3
- Ryszard Engelking, General topology, 2nd ed., Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989. Translated from the Polish by the author. MR 1039321
- Monroe Eskew and Yair Hayut, On the consistency of local and global versions of Chang’s conjecture, Trans. Amer. Math. Soc. 370 (2018), no. 4, 2879–2905. MR 3748588, DOI 10.1090/tran/7260
- D. H. Fremlin and S. Shelah, On partitions of the real line, Israel J. Math. 32 (1979), no. 4, 299–304. MR 571084, DOI 10.1007/BF02760459
- Moti Gitik, The negation of the singular cardinal hypothesis from $o(\kappa )=\kappa ^{++}$, Ann. Pure Appl. Logic 43 (1989), no. 3, 209–234. MR 1007865, DOI 10.1016/0168-0072(89)90069-9
- Moti Gitik, The strength of the failure of the singular cardinal hypothesis, Ann. Pure Appl. Logic 51 (1991), no. 3, 215–240. MR 1098782, DOI 10.1016/0168-0072(91)90016-F
- Leo Harrington, Long projective wellorderings, Ann. Math. Logic 12 (1977), no. 1, 1–24. MR 465866, DOI 10.1016/0003-4843(77)90004-3
- F. Hausdorff, Summen von $\aleph _1$ Mengen, Fund. Math. 26 (1936), 241–255.
- Stephen H. Hechler, Short complete nested sequences in $\beta N\backslash N$ and small maximal almost-disjoint families, General Topology and Appl. 2 (1972), 139–149. MR 307913, DOI 10.1016/0016-660X(72)90001-3
- Ronald Jensen and John Steel, $K$ without the measurable, J. Symbolic Logic 78 (2013), no. 3, 708–734. MR 3135495, DOI 10.2178/jsl.7803020
- Winfried Just, A. R. D. Mathias, Karel Prikry, and Petr Simon, On the existence of large $p$-ideals, J. Symbolic Logic 55 (1990), no. 2, 457–465. MR 1056363, DOI 10.2307/2274639
- Akihiro Kanamori, The higher infinite, 2nd ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. Large cardinals in set theory from their beginnings. MR 1994835
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597, DOI 10.1007/978-1-4612-4190-4
- Menachem Kojman, David Milovich, and Santi Spadaro, Noetherian type in topological products, Israel J. Math. 202 (2014), no. 1, 195–225. MR 3265318, DOI 10.1007/s11856-014-1101-4
- Jean-Pierre Levinski, Menachem Magidor, and Saharon Shelah, Chang’s conjecture for $\aleph _\omega$, Israel J. Math. 69 (1990), no. 2, 161–172. MR 1045371, DOI 10.1007/BF02937302
- N. Lusin and W. Sierpiński, Sur un ensemble non mesurable $B$, J. Math. Pures Appl. (9) 2 (1923), 53–72.
- Pierre Matet, Large cardinals and covering numbers, Fund. Math. 205 (2009), no. 1, 45–75. MR 2534178, DOI 10.4064/fm205-1-3
- Arnold W. Miller, Infinite combinatorics and definability, Ann. Pure Appl. Logic 41 (1989), no. 2, 179–203. MR 983001, DOI 10.1016/0168-0072(89)90013-4
- William J. Mitchell, The covering lemma, Handbook of set theory. Vols. 1, 2, 3, Springer, Dordrecht, 2010, pp. 1497–1594. MR 2768697, DOI 10.1007/978-1-4020-5764-9_{1}9
- Alexander V. Osipov, Note on the Banach problem 1 of condensations of Banach spaces onto compacta, Filomat 37 (2023), no. 7, 2183–2186. MR 4569973, DOI 10.2298/FIL2307183O
- Ernest Schimmerling and Martin Zeman, Square in core models, Bull. Symbolic Logic 7 (2001), no. 3, 305–314. MR 1860606, DOI 10.2307/2687750
- W. Sierpiński, Un théorème sur les continus, T$\hat {\mathrm {o}}$hoku Math. J.(2) 13 (1918), 300–303.
- Otmar Spinas, Partition numbers, Ann. Pure Appl. Logic 90 (1997), no. 1-3, 243–262. MR 1489310, DOI 10.1016/S0168-0072(97)00038-9
- Stevo Todorcevic, Walks on ordinals and their characteristics, Progress in Mathematics, vol. 263, Birkhäuser Verlag, Basel, 2007. MR 2355670, DOI 10.1007/978-3-7643-8529-3
- Philip Welch, On ${\bf \Sigma }_3^1$, Models and sets (Aachen, 1983) Lecture Notes in Math., vol. 1103, Springer, Berlin, 1984, pp. 473–484. MR 775705, DOI 10.1007/BFb0099398
Bibliographic Information
- Will Brian
- Affiliation: Department of Mathematics and Statistics, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, North Carolina 28223
- MR Author ID: 1003948
- Email: wbrian.math@gmail.com
- Received by editor(s): October 24, 2022
- Received by editor(s) in revised form: May 1, 2023
- Published electronically: November 7, 2023
- Additional Notes: The author was supported by NSF grant DMS-2154229.
- Communicated by: Vera Fischer
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 855-867
- MSC (2020): Primary 03E05, 03E35, 54A35
- DOI: https://doi.org/10.1090/proc/16558
- MathSciNet review: 4683864