Quasi-isometries in continuous functions spaces
HTML articles powered by AMS MathViewer
- by Igor A. Vestfrid;
- Proc. Amer. Math. Soc. 152 (2024), 739-748
- DOI: https://doi.org/10.1090/proc/16570
- Published electronically: November 21, 2023
- HTML | PDF | Request permission
Abstract:
We consider quasi-isometries in real continuous functions spaces and show that such a quasi-isometry can be well approximated by an affine surjective isometry.
On the other hand, we give an example of quasi-isometries of the unit ball $B_H$ in a Hilbert space $H$ that are far from any affine map of $H$ and from any isometry of $B_H$.
References
- Walter Benz, Extensions of distance preserving mappings in Euclidean and hyperbolic geometry, J. Geom. 79 (2004), no. 1-2, 19–26. MR 2041679, DOI 10.1007/s00022-003-1707-x
- Yoav Benyamini and Joram Lindenstrauss, Geometric nonlinear functional analysis. Vol. 1, American Mathematical Society Colloquium Publications, vol. 48, American Mathematical Society, Providence, RI, 2000. MR 1727673, DOI 10.1090/coll/048
- M. Isabel Garrido and Jesús A. Jaramillo, Variations on the Banach-Stone theorem, Extracta Math. 17 (2002), no. 3, 351–383. IV Course on Banach Spaces and Operators (Spanish) (Laredo, 2001). MR 1995413, DOI 10.1081/amp-120005381
- F. John, Rotation and strain, Commun. Pure Appl. Math. 14 (1961), 391–413; [Collected papers Volume 2, J. Moser, ed., Birkhäuser, (1985), 643–665].
- F. John, Quasi-isometric mappings, Seminar dell’Instituto Nazionale di Alta Matematica (1962–1963), 462–473; [Collected papers. Vol. 2, edited by J. Moser, Birkhäuser, 1985, pp. 678–689].
- F. John, On quasi-isometric mappings I, Commun. Pure Appl. Math., 21 (1968), 77–110; [Collected papers Volume 2, J. Moser, ed., Birkhäuser, (1985), 568–601].
- F. John, On quasi-isometric mappings II, Commun. Pure Appl. Math. 22 (1969), 265–278; [Collected papers Volume 2, J. Moser, ed., Birkhäuser, (1985), 603–616].
- N. J. Kalton, A remark on quasi-isometries, Proc. Amer. Math. Soc. 131 (2003), no. 4, 1225–1231. MR 1948114, DOI 10.1090/S0002-9939-02-06663-7
- Eva Matoušková, Almost isometries of balls, J. Funct. Anal. 190 (2002), no. 2, 507–525. MR 1899493, DOI 10.1006/jfan.2001.3862
- S. Mazur and S. Ulam, Sur les transformations isométriques d’espaces vectoriels normés, Comp. Rend. Paris 194 (1932), 946–948.
- Themistocles M. Rassias, Properties of isometries and approximate isometries, Recent progress in inequalities (Niš, 1996) Math. Appl., vol. 430, Kluwer Acad. Publ., Dordrecht, 1998, pp. 341–379. MR 1609975
- Themistocles M. Rassias, Properties of isometric mappings, J. Math. Anal. Appl. 235 (1999), no. 1, 108–121. MR 1758670, DOI 10.1006/jmaa.1999.6363
- I. A. Vestfrid, Affine properties and injectivity of quasi-isometries, Israel J. Math. 141 (2004), 185–210. MR 2063032, DOI 10.1007/BF02772218
- Igor A. Vestfrid, Non-surjective coarse version of the Banach-Stone theorem, Ann. Funct. Anal. 11 (2020), no. 3, 634–642. MR 4123834, DOI 10.1007/s43034-019-00044-x
Bibliographic Information
- Igor A. Vestfrid
- Affiliation: Nehemya st. 21/6, 32294 Haifa, Israel
- MR Author ID: 721201
- ORCID: 0000-0001-7542-050X
- Email: igor.vestfrid@gmail.com
- Received by editor(s): December 15, 2022
- Received by editor(s) in revised form: January 21, 2023, June 3, 2023, and June 5, 2023
- Published electronically: November 21, 2023
- Communicated by: Stephen Dilworth
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 739-748
- MSC (2020): Primary 39B82, 46B04, 46B20; Secondary 46E15, 46C05
- DOI: https://doi.org/10.1090/proc/16570
- MathSciNet review: 4683854