Some properties of $p$-limited sets
HTML articles powered by AMS MathViewer
- by Pablo Galindo and Vinícius C. C. Miranda;
- Proc. Amer. Math. Soc. 152 (2024), 749-763
- DOI: https://doi.org/10.1090/proc/16573
- Published electronically: November 29, 2023
- HTML | PDF | Request permission
Abstract:
Karn and Sinha [Glasg. Math. J. 56 (2014), pp. 427–437] introduced the $p$-limited ($1 \leq p < \infty$) sets (see the definition below). We show that $p$-limited sets are preserved by continuous polynomials as well as by the projective tensor product and that scalar-valued polynomials are $p$-summable on $p$-limited sets. Considering the notion of $p$-limited set from the $\ell _p$-valued operators point of view, we introduce in Section \ref{sec:3} two weaker types of $p$-limitedness in the setting of Banach lattices and study their basic properties.References
- Charalambos D. Aliprantis and Owen Burkinshaw, Positive operators, Springer, Dordrecht, 2006. Reprint of the 1985 original. MR 2262133, DOI 10.1007/978-1-4020-5008-4
- Richard M. Aron and Pilar Rueda, $p$-compact homogeneous polynomials from an ideal point of view, Function spaces in modern analysis, Contemp. Math., vol. 547, Amer. Math. Soc., Providence, RI, 2011, pp. 61–71. MR 2856480, DOI 10.1090/conm/547/10807
- Richard M. Aron and Pilar Rueda, Ideals of homogeneous polynomials, Publ. Res. Inst. Math. Sci. 48 (2012), no. 4, 957–969. MR 2999547, DOI 10.2977/PRIMS/93
- Jin Xi Chen, Zi Li Chen, and Guo Xing Ji, Almost limited sets in Banach lattices, J. Math. Anal. Appl. 412 (2014), no. 1, 547–553. MR 3145821, DOI 10.1016/j.jmaa.2013.10.085
- Juan Manuel Delgado and Cándido Piñeiro, On $p$-compact sets in classical Banach spaces, Int. Math. Forum 9 (2014), no. 1-4, 51–63. MR 3173805, DOI 10.12988/imf.2014.311215
- J. M. Delgado and C. Piñeiro, A note on $p$-limited sets, J. Math. Anal. Appl. 410 (2014), no. 2, 713–718. MR 3111861, DOI 10.1016/j.jmaa.2013.08.045
- Joe Diestel, Hans Jarchow, and Andrew Tonge, Absolutely summing operators, Cambridge Studies in Advanced Mathematics, vol. 43, Cambridge University Press, Cambridge, 1995. MR 1342297, DOI 10.1017/CBO9780511526138
- Seán Dineen, Complex analysis on infinite-dimensional spaces, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 1999. MR 1705327, DOI 10.1007/978-1-4471-0869-6
- Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos, and Václav Zizler, Banach space theory, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, New York, 2011. The basis for linear and nonlinear analysis. MR 2766381, DOI 10.1007/978-1-4419-7515-7
- Pablo Galindo, Polynomials and limited sets, Proc. Amer. Math. Soc. 124 (1996), no. 5, 1481–1488. MR 1307518, DOI 10.1090/S0002-9939-96-03175-9
- Pablo Galindo and Vinícius C. C. Miranda, Grothendieck-type subsets of Banach lattices, J. Math. Anal. Appl. 506 (2022), no. 1, Paper No. 125570, 14. MR 4304813, DOI 10.1016/j.jmaa.2021.125570
- Pablo Galindo and V. C. C. Miranda, A class of sets in a Banach space coarser than limited sets, Bull. Braz. Math. Soc. (N.S.) 53 (2022), no. 3, 941–955. MR 4458795, DOI 10.1007/s00574-022-00290-z
- Ioana Ghenciu, A note on $p$-limited sets in dual Banach spaces, Monatsh. Math. 200 (2023), no. 2, 255–270. MR 4544297, DOI 10.1007/s00605-022-01738-6
- Anil Kumar Karn and Deba Prasad Sinha, An operator summability of sequences in Banach spaces, Glasg. Math. J. 56 (2014), no. 2, 427–437. MR 3187909, DOI 10.1017/S0017089513000360
- M. L. Lourenço and V. C. C. Miranda, The property (d) and the almost limited completely continuous operators, Anal. Math. 49 (2023), no. 1, 225–241. MR 4554794, DOI 10.1007/s10476-023-0190-x
- Peter Meyer-Nieberg, Banach lattices, Universitext, Springer-Verlag, Berlin, 1991. MR 1128093, DOI 10.1007/978-3-642-76724-1
- Raymond A. Ryan, Weakly compact holomorphic mappings on Banach spaces, Pacific J. Math. 131 (1988), no. 1, 179–190. MR 917872, DOI 10.2140/pjm.1988.131.179
- Deba P. Sinha and Anil K. Karn, Compact operators whose adjoints factor through subspaces of $l_p$, Studia Math. 150 (2002), no. 1, 17–33. MR 1893422, DOI 10.4064/sm150-1-3
- Elroy D. Zeekoei and Jan H. Fourie, On $p$-convergent operators on Banach lattices, Acta Math. Sin. (Engl. Ser.) 34 (2018), no. 5, 873–890. MR 3785686, DOI 10.1007/s10114-017-7172-5
Bibliographic Information
- Pablo Galindo
- Affiliation: Departamento de Análisis Matemático, Universidad de Valencia. 46.100, Burjasot, Valencia, Spain
- MR Author ID: 218572
- Email: galindo@uv.es
- Vinícius C. C. Miranda
- Affiliation: Faculdade de Matemática, Universidade Federal de Uberlândia. 38.400-902, Uberlândia, Brazil
- ORCID: 0000-0002-9695-0726
- Email: colferaiv@gmail.com
- Received by editor(s): March 21, 2023
- Received by editor(s) in revised form: May 21, 2023, and June 5, 2023
- Published electronically: November 29, 2023
- Additional Notes: The second author was partially supported by MINECO/FEDER PGC2018-094431-B-I00(MICINN, Spain)
- Communicated by: Stephen Dilworth
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 749-763
- MSC (2020): Primary 46M05, 46B42; Secondary 47H60, 47B65
- DOI: https://doi.org/10.1090/proc/16573
- MathSciNet review: 4683855