Two results on $x^r + y^r = dz^p$
HTML articles powered by AMS MathViewer
- by Nuno Freitas and Filip Najman;
- Proc. Amer. Math. Soc. 152 (2024), 591-598
- DOI: https://doi.org/10.1090/proc/16575
- Published electronically: November 7, 2023
- HTML | PDF | Request permission
Abstract:
This note proves two theorems regarding Fermat-type equation $x^r + y^r = dz^p$ where $r \geq 5$ is a prime. Our main result shows that, for infinitely many integers $d$, the previous equation has no non-trivial primitive solutions such that $2 \mid x+y$ or $r \mid x+y$, for a set of exponents $p$ of positive density. We use the modular method with a symplectic argument to prove this result.References
- Nicolas Billerey, Imin Chen, Luis Dieulefait, and Nuno Freitas, A result on the equation $x^p+y^p=z^r$ using Frey abelian varieties, Proc. Amer. Math. Soc. 145 (2017), no. 10, 4111–4117. MR 3690598, DOI 10.1090/proc/13475
- Nicolas Billerey, Imin Chen, Lassina Dembélé, Luis Dieulefait, and Nuno Freitas, Some extensions of the modular method and Fermat equations of signature $(13,13,n)$, Publ. Mat. 67 (2023), no. 2, 715–741. MR 4609017, DOI 10.5565/publmat6722309
- Nicolas Billerey, Imin Chen, Luis Dieulefait, and Nuno Freitas, A multi-Frey approach to Fermat equations of signature $(r,r,p)$, Trans. Amer. Math. Soc. 371 (2019), no. 12, 8651–8677. MR 3955559, DOI 10.1090/tran/7477
- N. Billerey, I. Chen, L. Dieulefait, and N. Freitas. Appendix by F. Najman, On Darmon’s program for the Generalized Fermat equation, II, Preprint, arXiv:2205.15861, 2023.
- Henri Darmon, Rigid local systems, Hilbert modular forms, and Fermat’s last theorem, Duke Math. J. 102 (2000), no. 3, 413–449. MR 1756104, DOI 10.1215/S0012-7094-00-10233-5
- Nuno Freitas, Recipes to Fermat-type equations of the form $x^r+y^r=Cz^p$, Math. Z. 279 (2015), no. 3-4, 605–639. MR 3318242, DOI 10.1007/s00209-014-1384-5
- Nuno Freitas and Alain Kraus, An application of the symplectic argument to some Fermat-type equations, C. R. Math. Acad. Sci. Paris 354 (2016), no. 8, 751–755 (English, with English and French summaries). MR 3528327, DOI 10.1016/j.crma.2016.06.002
- Nuno Freitas and Alain Kraus, On the symplectic type of isomorphisms of the $p$-torsion of elliptic curves, Mem. Amer. Math. Soc. 277 (2022), no. 1361, v+105. MR 4403927, DOI 10.1090/memo/1361
- Nuno Freitas and Samir Siksek, The asymptotic Fermat’s last theorem for five-sixths of real quadratic fields, Compos. Math. 151 (2015), no. 8, 1395–1415. MR 3383161, DOI 10.1112/S0010437X14007957
- Emmanuel Halberstadt and Alain Kraus, Courbes de Fermat: résultats et problèmes, J. Reine Angew. Math. 548 (2002), 167–234 (French, with English summary). MR 1915212, DOI 10.1515/crll.2002.058
- Alain Kraus, Une question sur les équations $x^m-y^m=Rz^n$, Compositio Math. 132 (2002), no. 1, 1–26 (French, with English summary). MR 1914253, DOI 10.1023/A:1016028914506
- Diana Mocanu, Asymptotic Fermat for signatures $(r,r,p)$ using the modular approach, Res. Number Theory 9 (2023), no. 4, Paper No. 71, 17. MR 4648747, DOI 10.1007/s40993-023-00474-6
- Ioannis Papadopoulos, Sur la classification de Néron des courbes elliptiques en caractéristique résiduelle $2$ et $3$, J. Number Theory 44 (1993), no. 2, 119–152 (French, with French summary). MR 1225948, DOI 10.1006/jnth.1993.1040
- Maja Volkov, Les représentations $l$-adiques associées aux courbes elliptiques sur ${\Bbb Q}_p$, J. Reine Angew. Math. 535 (2001), 65–101 (French, with English summary). MR 1837096, DOI 10.1515/crll.2001.046
Bibliographic Information
- Nuno Freitas
- Affiliation: Instituto de Ciencias Matemáticas, CSIC, Calle Nicolás Cabrera 13–15, 28049 Madrid, Spain
- MR Author ID: 1044711
- Email: nuno.freitas@icmat.es
- Filip Najman
- Affiliation: University of Zagreb, Faculty of Science, Department of Mathematics, Bijenička cesta 30, 10000 Zagreb, Croatia
- MR Author ID: 886852
- ORCID: 0000-0002-0994-0846
- Email: fnajman@math.hr
- Received by editor(s): July 12, 2022
- Received by editor(s) in revised form: May 5, 2023, and June 5, 2023
- Published electronically: November 7, 2023
- Additional Notes: The second author was supported by the QuantiXLie Centre of Excellence, a project co-financed by the Croatian Government and European Union through the European Regional Development Fund - the Competitiveness and Cohesion Operational Programme (Grant KK.01.1.1.01.0004) and by the Croatian Science Foundation under the project no. IP-2018-01-1313. The first author was partially supported by the PID2019-107297GB-I00 grant of the MICINN (Spain)
- Communicated by: Amanda Folsom
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 591-598
- MSC (2020): Primary 11D41
- DOI: https://doi.org/10.1090/proc/16575
- MathSciNet review: 4683842