Examples of relatively Ding unstable Calabi dream manifolds
HTML articles powered by AMS MathViewer
- by Yasufumi Nitta and Shunsuke Saito;
- Proc. Amer. Math. Soc. 152 (2024), 553-558
- DOI: https://doi.org/10.1090/proc/16643
- Published electronically: November 17, 2023
- HTML | PDF | Request permission
Abstract:
The Mabuchi constant is a holomorphic invariant of Fano manifolds, which obstructs the existence of Mabuchi’s generalized Kähler-Einstein metrics and relative Ding semistability. In this study, we give a formula for the Mabuchi constant of produtcs of Fano manifolds. As an application, we present examples of Fano manifolds which admit Calabi’s extremal Kähler metrics in every Kähler class, but are relatively Ding unstable.References
- Robert J. Berman, K-polystability of ${\Bbb Q}$-Fano varieties admitting Kähler-Einstein metrics, Invent. Math. 203 (2016), no. 3, 973–1025. MR 3461370, DOI 10.1007/s00222-015-0607-7
- Michel Brion, Sur l’image de l’application moment, Séminaire d’algèbre Paul Dubreil et Marie-Paule Malliavin (Paris, 1986) Lecture Notes in Math., vol. 1296, Springer, Berlin, 1987, pp. 177–192 (French). MR 932055, DOI 10.1007/BFb0078526
- Eugenio Calabi, Extremal Kähler metrics, Seminar on Differential Geometry, Ann. of Math. Stud., No. 102, Princeton Univ. Press, Princeton, NJ, 1982, pp. 259–290. MR 645743
- Xiuxiong Chen and Jingrui Cheng, On the constant scalar curvature Kähler metrics (II)—Existence results, J. Amer. Math. Soc. 34 (2021), no. 4, 937–1009. MR 4301558, DOI 10.1090/jams/966
- Akito Futaki and Toshiki Mabuchi, Bilinear forms and extremal Kähler vector fields associated with Kähler classes, Math. Ann. 301 (1995), no. 2, 199–210. MR 1314584, DOI 10.1007/BF01446626
- Kento Fujita, Optimal bounds for the volumes of Kähler-Einstein Fano manifolds, Amer. J. Math. 140 (2018), no. 2, 391–414. MR 3783213, DOI 10.1353/ajm.2018.0009
- Daniel Guan, Existence of extremal metrics on compact almost homogeneous Kähler manifolds with two ends, Trans. Amer. Math. Soc. 347 (1995), no. 6, 2255–2262. MR 1285992, DOI 10.1090/S0002-9947-1995-1285992-6
- Jiyuan Han and Chi Li, On the Yau-Tian-Donaldson conjecture for generalized Kähler-Ricci soliton equations, Comm. Pure Appl. Math. 76 (2023), no. 9, 1793–1867. MR 4612573, DOI 10.1002/cpa.22053
- Andrew D. Hwang, On existence of Kähler metrics with constant scalar curvature, Osaka J. Math. 31 (1994), no. 3, 561–595. MR 1309403
- Toshiki Mabuchi, Kähler-Einstein metrics for manifolds with nonvanishing Futaki character, Tohoku Math. J. (2) 53 (2001), no. 2, 171–182. MR 1829977, DOI 10.2748/tmj/1178207477
- Toshiki Mabuchi, Test configurations, stabilities and canonical Kähler metrics—complex geometry by the energy method, SpringerBriefs in Mathematics, Springer, Singapore, [2021] ©2021. MR 4248091, DOI 10.1007/978-981-16-0500-0
- Y. Nitta and S. Saito, A uniform version of the Yau-Tian-Donaldson correspondence for extremal Kähler metrics on polarized toric manifolds, arXiv:2110.10386.
- Yasufumi Nitta, Shunsuke Saito, and Naoto Yotsutani, Relative Ding and $K$-stability of toric Fano manifolds in low dimensions, Eur. J. Math. 9 (2023), no. 2, Paper No. 29, 21. MR 4578508, DOI 10.1007/s40879-023-00617-0
- Yi Yao, Mabuchi solitons and relative Ding stability of toric Fano varieties, Int. Math. Res. Not. IMRN 24 (2022), 19790–19853. MR 4523260, DOI 10.1093/imrn/rnab226
- Yi Yao, Relative Ding stability and an obstruction to the existence of Mabuchi solitons, J. Geom. Anal. 32 (2022), no. 4, Paper No. 105, 51. MR 4372898, DOI 10.1007/s12220-021-00858-z
Bibliographic Information
- Yasufumi Nitta
- Affiliation: Department of Mathematics, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- MR Author ID: 827859
- Email: nitta@rs.tus.ac.jp
- Shunsuke Saito
- Affiliation: Department of Mathematics, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- MR Author ID: 1056262
- ORCID: 0009-0003-3017-049X
- Email: saito@rs.tus.ac.jp
- Received by editor(s): May 27, 2023
- Published electronically: November 17, 2023
- Communicated by: Jiaping Wang
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 553-558
- MSC (2020): Primary 14J45; Secondary 32Q26, 53C25
- DOI: https://doi.org/10.1090/proc/16643
- MathSciNet review: 4683838