Socle degrees for local cohomology modules of thickenings of maximal minors and sub-maximal Pfaffians
HTML articles powered by AMS MathViewer
- by Jiamin Li and Michael Perlman;
- Proc. Amer. Math. Soc. 152 (2024), 599-615
- DOI: https://doi.org/10.1090/proc/16645
- Published electronically: December 7, 2023
- HTML | PDF | Request permission
Abstract:
Let $S$ be the polynomial ring on the space of non-square generic matrices or the space of odd-sized skew-symmetric matrices, and let $I$ be the determinantal ideal of maximal minors or $Pf$ the ideal of sub-maximal Pfaffians, respectively. Using desingularizations and representation theory of the general linear group we expand upon work of Raicu–Weyman–Witt [Adv. Math. 250 (2014), pp. 596–610] to determine the $S$-module structures of $Ext^j_S(S/I^t, S)$ and $Ext^j_S(S/Pf^t, S)$, from which we get the degrees of generators of these $Ext$ modules. As a consequence, via graded local duality we answer a question of Wenliang Zhang [J. Pure Appl. Algebra 225 (2021), Paper No. 106789] on the socle degrees of local cohomology modules of the form $H^j_\mathfrak {m}(S/I^t)$.References
- Kaan Akin, David A. Buchsbaum, and Jerzy Weyman, Schur functors and Schur complexes, Adv. in Math. 44 (1982), no. 3, 207–278. MR 658729, DOI 10.1016/0001-8708(82)90039-1
- S. Abeasis and A. Del Fra, Young diagrams and ideals of Pfaffians, Adv. in Math. 35 (1980), no. 2, 158–178. MR 560133, DOI 10.1016/0001-8708(80)90046-8
- Bhargav Bhatt, Manuel Blickle, Gennady Lyubeznik, Anurag K. Singh, and Wenliang Zhang, Stabilization of the cohomology of thickenings, Amer. J. Math. 141 (2019), no. 2, 531–561. MR 3928045, DOI 10.1353/ajm.2019.0013
- Bhargav Bhatt, Manuel Blickle, Gennady Lyubeznik, Anurag K. Singh, and Wenliang Zhang, An asymptotic vanishing theorem for the cohomology of thickenings, Math. Ann. 380 (2021), no. 1-2, 161–173. MR 4263681, DOI 10.1007/s00208-020-02140-z
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- C. de Concini, David Eisenbud, and C. Procesi, Young diagrams and determinantal varieties, Invent. Math. 56 (1980), no. 2, 129–165. MR 558865, DOI 10.1007/BF01392548
- Hailong Dao and Jonathan Montaño, On asymptotic vanishing behavior of local cohomology, Math. Z. 295 (2020), no. 1-2, 73–86. MR 4100017, DOI 10.1007/s00209-019-02353-2
- William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249, DOI 10.1007/978-1-4612-0979-9
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 463157, DOI 10.1007/978-1-4757-3849-0
- Ryoshi Hotta, Kiyoshi Takeuchi, and Toshiyuki Tanisaki, $D$-modules, perverse sheaves, and representation theory, Progress in Mathematics, vol. 236, Birkhäuser Boston, Inc., Boston, MA, 2008. Translated from the 1995 Japanese edition by Takeuchi. MR 2357361, DOI 10.1007/978-0-8176-4523-6
- Craig Huneke, Lectures on local cohomology, Interactions between homotopy theory and algebra, Contemp. Math., vol. 436, Amer. Math. Soc., Providence, RI, 2007, pp. 51–99. Appendix 1 by Amelia Taylor. MR 2355770, DOI 10.1090/conm/436/08404
- Jennifer Kenkel, Lengths of Local Cohomology of Thickenings, arXiv:1912.02917 (2019).
- Jiamin Li, On the generalized multiplicities of maximal minors and sub-maximal Pfaffians, arXiv:2205.09657 (2022).
- Michael Perlman, Lyubeznik numbers for Pfaffian rings, J. Pure Appl. Algebra 224 (2020), no. 5, 106247, 24. MR 4046247, DOI 10.1016/j.jpaa.2019.106247
- Michael Perlman, Regularity and cohomology of Pfaffian thickenings, J. Commut. Algebra 13 (2021), no. 4, 523–548. MR 4366836, DOI 10.1216/jca.2021.13.523
- Claudiu Raicu, Characters of equivariant $\mathcal {D}$-modules on spaces of matrices, Compos. Math. 152 (2016), no. 9, 1935–1965. MR 3568944, DOI 10.1112/S0010437X16007521
- Claudiu Raicu, Regularity and cohomology of determinantal thickenings, Proc. Lond. Math. Soc. (3) 116 (2018), no. 2, 248–280. MR 3764061, DOI 10.1112/plms.12071
- Claudiu Raicu and Jerzy Weyman, Local cohomology with support in generic determinantal ideals, Algebra Number Theory 8 (2014), no. 5, 1231–1257. MR 3263142, DOI 10.2140/ant.2014.8.1231
- Claudiu Raicu and Jerzy Weyman, Local cohomology with support in ideals of symmetric minors and Pfaffians, J. Lond. Math. Soc. (2) 94 (2016), no. 3, 709–725. MR 3614925, DOI 10.1112/jlms/jdw056
- Claudiu Raicu, Jerzy Weyman, and Emily E. Witt, Local cohomology with support in ideals of maximal minors and sub-maximal Pfaffians, Adv. Math. 250 (2014), 596–610. MR 3122178, DOI 10.1016/j.aim.2013.10.005
- Hunter Simper, Local cohomology of certain determinantal thickenings, arXiv:2205.06738 (2022).
- Jerzy Weyman, Cohomology of vector bundles and syzygies, Cambridge Tracts in Mathematics, vol. 149, Cambridge University Press, Cambridge, 2003. MR 1988690, DOI 10.1017/CBO9780511546556
- Wenliang Zhang, On asymptotic socle degrees of local cohomology modules, J. Pure Appl. Algebra 225 (2021), no. 12, Paper No. 106789, 12. MR 4260035, DOI 10.1016/j.jpaa.2021.106789
Bibliographic Information
- Jiamin Li
- Affiliation: Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, Illinois 60607
- ORCID: 0000-0001-9137-4355
- Michael Perlman
- Affiliation: School of Mathematics, University of Minnesota - Twin Cities, SE Minneapolis, Minnesota 55455
- MR Author ID: 1145761
- ORCID: 0000-0002-8970-1801
- Received by editor(s): January 12, 2023
- Received by editor(s) in revised form: June 6, 2023
- Published electronically: December 7, 2023
- Additional Notes: The first author was partially supported by NSF Grant No. DMS 1752081.
- Communicated by: Jerzy Weyman
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 599-615
- MSC (2020): Primary 14F10, 13D45, 14M12
- DOI: https://doi.org/10.1090/proc/16645
- MathSciNet review: 4683843