Some classes of topological spaces extending the class of $\Delta$-spaces
HTML articles powered by AMS MathViewer
- by Jerzy Ka̧kol, Ondřej Kurka and Arkady Leiderman;
- Proc. Amer. Math. Soc. 152 (2024), 883-898
- DOI: https://doi.org/10.1090/proc/16661
- Published electronically: November 29, 2023
- HTML | PDF | Request permission
Abstract:
A study of the class $\Delta$ consisting of topological $\Delta$-spaces was originated by Jerzy Ka̧kol and Arkady Leiderman [Proc. Amer. Math. Soc. Ser. B 8 (2021), pp. 86–99; Proc. Amer. Math. Soc. Ser. B 8 (2021), pp. 267–280]. The main purpose of this paper is to introduce and investigate new classes $\Delta _2 \subset \Delta _1$ properly containing $\Delta$.
We observe that for every first-countable $X$ the following equivalences hold: $X\in \Delta _1$ iff $X\in \Delta _2$ iff each countable subset of $X$ is $G_{\delta }$. Thus, new proposed concepts provide a natural extension of the family of all $\lambda$-sets beyond the separable metrizable spaces.
We prove that (1) A pseudocompact space $X$ belongs to the class $\Delta _1$ iff countable subsets of $X$ are scattered. (2) Every regular scattered space belongs to the class $\Delta _2$.
We investigate whether the classes $\Delta _1$ and $\Delta _2$ are invariant under the basic topological operations. Similarly to $\Delta$, both classes $\Delta _1$ and $\Delta _2$ are invariant under the operation of taking countable unions of closed subspaces. In contrast to $\Delta$, they are not preserved by closed continuous images.
Let $Y$ be $l$-dominated by $X$, i.e. $C_p(X)$ admits a continuous linear map onto $C_p(Y)$. We show that $Y \in \Delta _1$ whenever $X \in \Delta _1$. Moreover, we establish that if $Y$ is $l$-dominated by a compact scattered space $X$, then $Y$ is a pseudocompact space such that its Stone–Čech compactification $\beta Y$ is scattered.
References
- A. V. Arkhangel’skii, Linear homeomorphisms of function spaces, Soviet Math. Dokl. 25 (1982), 852–855.
- A. V. Arkhangel’skii, Topological function spaces, Kluwer, Dordrecht, 1992.
- A. V. Arkhangel’skii, $C_{p}$-theory, In Recent Progress in General Topology (Edited by M. Hušek and J. van Mill), Elsevier, Amsterdam, 1992, 1–56.
- Antonio Avilés and David Guerrero Sánchez, Are Eberlein-Grothendieck scattered spaces $\sigma$-discrete?, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 108 (2014), no. 2, 849–859. MR 3249979, DOI 10.1007/s13398-013-0146-2
- Zoltan T. Balogh, There is a paracompact $Q$-set space in ZFC, Proc. Amer. Math. Soc. 126 (1998), no. 6, 1827–1833. MR 1459106, DOI 10.1090/S0002-9939-98-04426-8
- Ryszard Engelking, General topology, 2nd ed., Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989. Translated from the Polish by the author. MR 1039321
- Juan Carlos Ferrando, Approximation by pointwise bounded sets of continuous functions, Topology Appl. 317 (2022), Paper No. 108191, 9. MR 4454331, DOI 10.1016/j.topol.2022.108191
- J. C. Ferrando, J. Ka̧kol, A. Leiderman, and S. A. Saxon, Distinguished $C_p(X)$ spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115 (2021), no. 1, Paper No. 27, 18. MR 4182104, DOI 10.1007/s13398-020-00967-4
- J. C. Ferrando and Stephen A. Saxon, If not distinguished, is $C_p( X)$ even close?, Proc. Amer. Math. Soc. 149 (2021), no. 6, 2583–2596. MR 4246809, DOI 10.1090/proc/15439
- William G. Fleissner and Arnold W. Miller, On $Q$ sets, Proc. Amer. Math. Soc. 78 (1980), no. 2, 280–284. MR 550513, DOI 10.1090/S0002-9939-1980-0550513-4
- Fred Galvin and Arnold W. Miller, $\gamma$-sets and other singular sets of real numbers, Topology Appl. 17 (1984), no. 2, 145–155. MR 738943, DOI 10.1016/0166-8641(84)90038-5
- J. Gerlits and Zs. Nagy, Some properties of $C(X)$. I, Topology Appl. 14 (1982), no. 2, 151–161. MR 667661, DOI 10.1016/0166-8641(82)90065-7
- I. Juhász and J. van Mill, Countably compact spaces all countable subsets of which are scattered, Comment. Math. Univ. Carolin. 22 (1981), no. 4, 851–855. MR 647031
- Michael Hrušák, Ángel Tamariz-Mascarúa, and Mikhail Tkachenko (eds.), Pseudocompact topological spaces, Developments in Mathematics, vol. 55, Springer, Cham, 2018. A survey of classic and new results with open problems. MR 3822332, DOI 10.1007/978-3-319-91680-4
- Jerzy Ka̧kol and Arkady Leiderman, A characterization of $X$ for which spaces $C_p(X)$ are distinguished and its applications, Proc. Amer. Math. Soc. Ser. B 8 (2021), 86–99. MR 4214339, DOI 10.1090/bproc/76
- Jerzy Ka̧kol and Arkady Leiderman, Basic properties of $X$ for which the space $C_p(X)$ is distinguished, Proc. Amer. Math. Soc. Ser. B 8 (2021), 267–280. MR 4316069, DOI 10.1090/bproc/95
- V. Kannan and M. Rajagopalan, Scattered spaces. II, Illinois J. Math. 21 (1977), no. 4, 735–751. MR 474180, DOI 10.1215/ijm/1256048924
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 217751
- Ondřej Kurka, On binormality in non-separable Banach spaces, J. Math. Anal. Appl. 371 (2010), no. 2, 425–435. MR 2670123, DOI 10.1016/j.jmaa.2010.05.030
- Arkady Leiderman and Paul Szeptycki, On $\Delta$-spaces, Israel J. Math., Accepted for publication.
- A. Leiderman and V. V. Tkachuk, Pseudocompact $\Delta$-spaces are often scattered, Monatsh. Math. 197 (2022), no. 3, 493–503. MR 4389132, DOI 10.1007/s00605-021-01628-3
- Arnold W. Miller, Special subsets of the real line, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 201–233. MR 776624
- Peter J. Nyikos, A history of the normal Moore space problem, Handbook of the history of general topology, Vol. 3, Hist. Topol., vol. 3, Kluwer Acad. Publ., Dordrecht, 2001, pp. 1179–1212. MR 1900271
- Teodor C. Przymusiński, Normality and separability of Moore spaces, Set-theoretic topology (Papers, Inst. Medicine and Math., Ohio Univ., Athens, Ohio, 1975–1976) Academic Press, New York-London, 1977, pp. 325–337. MR 448310
- G. M. Reed, On normality and countable paracompactness, Fund. Math. 110 (1980), no. 2, 145–152. MR 600588, DOI 10.4064/fm-110-2-145-152
- Masami Sakai, Two properties of $C_p(X)$ weaker than the Fréchet Urysohn property, Topology Appl. 153 (2006), no. 15, 2795–2804. MR 2248383, DOI 10.1016/j.topol.2005.11.012
- Zbigniew Semadeni, Banach spaces of continuous functions. Vol. I, Monografie Matematyczne [Mathematical Monographs], Tom 55, PWN—Polish Scientific Publishers, Warsaw, 1971. MR 296671
- V. V. Tkachuk, A note on $\kappa$-Fréchet-Urysohn property in function spaces, Bull. Belg. Math. Soc. Simon Stevin 28 (2021), no. 1, 123–132. MR 4273858, DOI 10.36045/j.bbms.200704
- V. V. Uspenskiĭ, A characterization of compactness in terms of the uniform structure in a space of functions, Uspekhi Mat. Nauk 37 (1982), no. 4(226), 183–184 (Russian). MR 667997
Bibliographic Information
- Jerzy Ka̧kol
- Affiliation: Faculty of Mathematics and Informatics, A. Mickiewicz University, 61-614 Poznań, Poland; and Institute of Mathematics, Czech Academy of Sciences, Prague, Czech Republic
- MR Author ID: 96980
- ORCID: 0000-0002-8311-2117
- Email: kakol@amu.edu.pl
- Ondřej Kurka
- Affiliation: Institute of Mathematics, Czech Academy of Sciences, Prague, Czech Republic
- ORCID: 0000-0001-8560-437X
- Email: kurka.ondrej@seznam.cz
- Arkady Leiderman
- Affiliation: Department of Mathematics, Ben-Gurion University of the Negev, Beer Sheva, Israel
- MR Author ID: 214471
- ORCID: 0000-0002-2257-1635
- Email: arkady@math.bgu.ac.il
- Received by editor(s): September 25, 2022
- Received by editor(s) in revised form: April 23, 2023
- Published electronically: November 29, 2023
- Additional Notes: The research of the first named author was supported by the GAČR project 20-22230L and RVO: 67985840. The research of the second named author was supported by the GAČR project 22-07833K and RVO: 67985840.
- Communicated by: Vera Fischer
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 883-898
- MSC (2020): Primary 54C35, 54G12, 54H05, 46A03
- DOI: https://doi.org/10.1090/proc/16661
- MathSciNet review: 4683866