On an exponential sum related to the Möbius function
HTML articles powered by AMS MathViewer
- by Wei Zhang;
- Proc. Amer. Math. Soc. 152 (2024), 1373-1376
- DOI: https://doi.org/10.1090/proc/16270
- Published electronically: August 22, 2023
- HTML | PDF | Request permission
Abstract:
Let $\mu (n)$ be the Möbius function and $e(\alpha )=e^{2\pi i\alpha }$. In this paper, we study upper bounds of the classical sum \[ S(x,\alpha )≔\sum _{1\leq n\leq x}\mu (n)e(\alpha n). \] We can improve some classical results of Baker and Harman [J. London Math. Soc. (2) 43 (1991), pp. 193–198].References
- R. C. Baker and G. Harman, Exponential sums formed with the Möbius function, J. London Math. Soc. (2) 43 (1991), no. 2, 193–198. MR 1111578, DOI 10.1112/jlms/s2-43.2.193
- H. Davenport, On some infinite series involving arithmetical functions (II), Quart. J. Math. 8 (1937), 313–320.
- D. Hajela and B. Smith, On the maximum of an exponential sum of the Möbius function, Number theory (New York, 1984–1985) Lecture Notes in Math., vol. 1240, Springer, Berlin, 1987, pp. 145–164. MR 894510, DOI 10.1007/BFb0072979
- A. E. Ingham, On the estimation of $N(\sigma ,T)$, Quart. J. Math. Oxford Ser. 11 (1940), 291–292. MR 3649
- H. Maier and A. Sankaranarayanan, On an exponential sum involving the Möbius function, Hardy-Ramanujan J. 28 (2005), 10–29. MR 2192075
Bibliographic Information
- Wei Zhang
- Affiliation: School of Mathematics and Statistics, Henan University, Kaifeng 475004, Henan, People’s Republic of China
- Email: zhangweimath@126.com
- Received by editor(s): April 8, 2022
- Received by editor(s) in revised form: April 27, 2022, April 28, 2022, September 2, 2022, and September 4, 2022
- Published electronically: August 22, 2023
- Additional Notes: ORCID: 0000-0002-2150-6145
- Communicated by: Ling Long
- © Copyright 2023 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 1373-1376
- MSC (2020): Primary 11L20, 11M26
- DOI: https://doi.org/10.1090/proc/16270
- MathSciNet review: 4709211