Generalized elastic translating solitons
HTML articles powered by AMS MathViewer
- by Álvaro Pámpano;
- Proc. Amer. Math. Soc. 152 (2024), 1743-1753
- DOI: https://doi.org/10.1090/proc/16651
- Published electronically: January 26, 2024
- HTML | PDF | Request permission
Abstract:
We study translating soliton solutions to the flow by powers of the curvature of curves in the plane. We characterize these solitons as critical curves for functionals depending on the curvature. More precisely, translating solitons to the flow by powers of the curvature are shown to be generalized elastic curves. In particular, focusing on the curve shortening flow, we deduce a new variational characterization of the grim reaper curve.References
- U. Abresch and J. Langer, The normalized curve shortening flow and homothetic solutions, J. Differential Geom. 23 (1986), no. 2, 175–196. MR 845704, DOI 10.4310/jdg/1214440025
- Ben Andrews, Classification of limiting shapes for isotropic curve flows, J. Amer. Math. Soc. 16 (2003), no. 2, 443–459. MR 1949167, DOI 10.1090/S0894-0347-02-00415-0
- Ben Andrews, Evolving convex curves, Calc. Var. Partial Differential Equations 7 (1998), no. 4, 315–371. MR 1660843, DOI 10.1007/s005260050111
- Sigurd B. Angenent, Curve shortening and the topology of closed geodesics on surfaces, Ann. of Math. (2) 162 (2005), no. 3, 1187–1241. MR 2179729, DOI 10.4007/annals.2005.162.1187
- W. Blaschke, Vorlesungen uber Differentialgeometrie und Geometrische Grundlagen von Einsteins Relativitatstheorie I–II: Elementare Differenntialgeometrie, Springer, (1921–1923).
- C. B. Boyer and U. Merzbach, A History of Mathematics, Wiley, New York, (1991).
- Hubert L. Bray and André Neves, Classification of prime 3-manifolds with Yamabe invariant greater than $\Bbb {RP}^3$, Ann. of Math. (2) 159 (2004), no. 1, 407–424. MR 2052359, DOI 10.4007/annals.2004.159.407
- Simon Brendle, Pei-Ken Hung, and Mu-Tao Wang, A Minkowski inequality for hypersurfaces in the anti–de Sitter–Schwarzschild manifold, Comm. Pure Appl. Math. 69 (2016), no. 1, 124–144. MR 3433631, DOI 10.1002/cpa.21556
- Antonio Bueno and Irene Ortiz, Invariant hypersurfaces with linear prescribed mean curvature, J. Math. Anal. Appl. 487 (2020), no. 2, 124033, 19. MR 4078539, DOI 10.1016/j.jmaa.2020.124033
- Frédéric Cao, Geometric curve evolution and image processing, Lecture Notes in Mathematics, vol. 1805, Springer-Verlag, Berlin, 2003. MR 1976551, DOI 10.1007/b10404
- Kai-Seng Chou and Xu-Jia Wang, A logarithmic Gauss curvature flow and the Minkowski problem, Ann. Inst. H. Poincaré C Anal. Non Linéaire 17 (2000), no. 6, 733–751. MR 1804653, DOI 10.1016/S0294-1449(00)00053-6
- Tobias H. Colding and William P. Minicozzi II, Generic mean curvature flow I: generic singularities, Ann. of Math. (2) 175 (2012), no. 2, 755–833. MR 2993752, DOI 10.4007/annals.2012.175.2.7
- Ulrich Dierkes, A geometric maximum principle, Plateau’s problem for surfaces of prescribed mean curvature, and the two-dimensional analogue of the catenary, Partial differential equations and calculus of variations, Lecture Notes in Math., vol. 1357, Springer, Berlin, 1988, pp. 116–141. MR 976233, DOI 10.1007/BFb0082864
- Gregory Drugan, Hojoo Lee, and Glen Wheeler, Solitons for the inverse mean curvature flow, Pacific J. Math. 284 (2016), no. 2, 309–326. MR 3544302, DOI 10.2140/pjm.2016.284.309
- Michael E. Gage, An isoperimetric inequality with applications to curve shortening, Duke Math. J. 50 (1983), no. 4, 1225–1229. MR 726325, DOI 10.1215/S0012-7094-83-05052-4
- M. E. Gage, Curve shortening makes convex curves circular, Invent. Math. 76 (1984), no. 2, 357–364. MR 742856, DOI 10.1007/BF01388602
- M. Gage and R. S. Hamilton, The heat equation shrinking convex plane curves, J. Differential Geom. 23 (1986), no. 1, 69–96. MR 840401, DOI 10.4310/jdg/1214439902
- Yoshikazu Giga, Surface evolution equations, Monographs in Mathematics, vol. 99, Birkhäuser Verlag, Basel, 2006. A level set approach. MR 2238463
- Matthew A. Grayson, Shortening embedded curves, Ann. of Math. (2) 129 (1989), no. 1, 71–111. MR 979601, DOI 10.2307/1971486
- M. Gromov, Isoperimetry of waists and concentration of maps, Geom. Funct. Anal. 13 (2003), no. 1, 178–215. MR 1978494, DOI 10.1007/s000390300004
- Hoeskuldur P. Halldorsson, Self-similar solutions to the curve shortening flow, Trans. Amer. Math. Soc. 364 (2012), no. 10, 5285–5309. MR 2931330, DOI 10.1090/S0002-9947-2012-05632-7
- David Hoffman, Tom Ilmanen, Francisco Martín, and Brian White, Notes on translating solitons for mean curvature flow, Minimal surfaces: integrable systems and visualisation, Springer Proc. Math. Stat., vol. 349, Springer, Cham, [2021] ©2021, pp. 147–168. MR 4281668, DOI 10.1007/978-3-030-68541-6_{9}
- Gerhard Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geom. 20 (1984), no. 1, 237–266. MR 772132
- G. Huisken and T. Ilmanen, The Riemannian Penrose inequality, Internat. Math. Res. Notices 20 (1997), 1045–1058. MR 1486695, DOI 10.1155/S1073792897000664
- Gerhard Huisken and Tom Ilmanen, The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differential Geom. 59 (2001), no. 3, 353–437. MR 1916951
- Tom Ilmanen, Elliptic regularization and partial regularity for motion by mean curvature, Mem. Amer. Math. Soc. 108 (1994), no. 520, x+90. MR 1196160, DOI 10.1090/memo/0520
- Daehwan Kim and Juncheol Pyo, Translating solitons for the inverse mean curvature flow, Results Math. 74 (2019), no. 1, Paper No. 64, 28. MR 3917943, DOI 10.1007/s00025-019-0990-2
- Joel Langer and David A. Singer, The total squared curvature of closed curves, J. Differential Geom. 20 (1984), no. 1, 1–22. MR 772124
- R. Levien, The elastica: a mathematical history, Technical Report No. UCB/EECS-2008-103, University of Berkeley, 2008.
- Rafael López and Álvaro Pámpano, A relation between cylindrical critical points of Willmore-type energies, weighted areas and vertical potential energies, J. Geom. Phys. 185 (2023), Paper No. 104731, 16. MR 4530907, DOI 10.1016/j.geomphys.2022.104731
- Rafael López and Álvaro Pámpano, Stationary soap films with vertical potentials, Nonlinear Anal. 215 (2022), Paper No. 112661, 22. MR 4340791, DOI 10.1016/j.na.2021.112661
- Emilio Musso and Álvaro Pámpano, Closed 1/2-elasticae in the 2-sphere, J. Nonlinear Sci. 33 (2023), no. 1, Paper No. 3, 48. MR 4499134, DOI 10.1007/s00332-022-09860-3
- Chia-Hsing Nien and Dong-Ho Tsai, Convex curves moving translationally in the plane, J. Differential Equations 225 (2006), no. 2, 605–623. MR 2225802, DOI 10.1016/j.jde.2006.03.005
- Guillermo Sapiro, Geometric partial differential equations and image analysis, Cambridge University Press, Cambridge, 2001. MR 1813971, DOI 10.1017/CBO9780511626319
- C. Truesdell, The rational mechanics of flexible or elastic bodies, 1638–1788, Leonhardi Euleri Opera Omnia (Series Secunda, Opera Mechanica et Astronomica), Vol. XI, sectio secunda, Orell Füssli, Zürich, 1960. Auctoritate et impensis Societatis Scientiarum Naturalium Helveticae. MR 131341, DOI 10.1007/978-3-0348-5015-5
- John Urbas, Convex curves moving homothetically by negative powers of their curvature, Asian J. Math. 3 (1999), no. 3, 635–656. MR 1793674, DOI 10.4310/AJM.1999.v3.n3.a4
- Augusto Visintin, Models of phase transitions, Progress in Nonlinear Differential Equations and their Applications, vol. 28, Birkhäuser Boston, Inc., Boston, MA, 1996. MR 1423808, DOI 10.1007/978-1-4612-4078-5
Bibliographic Information
- Álvaro Pámpano
- Affiliation: Department of Mathematics and Statistics, Texas Tech University, Lubbock, Texas 79409
- ORCID: 0000-0003-2239-2247
- Email: alvaro.pampano@ttu.edu
- Received by editor(s): April 14, 2023
- Received by editor(s) in revised form: August 15, 2023
- Published electronically: January 26, 2024
- Communicated by: Jiaping Wang
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 1743-1753
- MSC (2020): Primary 53A04
- DOI: https://doi.org/10.1090/proc/16651
- MathSciNet review: 4709240