Some smooth circle and cyclic group actions on exotic spheres
HTML articles powered by AMS MathViewer
- by J. D. Quigley;
- Proc. Amer. Math. Soc. 152 (2024), 1777-1788
- DOI: https://doi.org/10.1090/proc/16662
- Published electronically: February 9, 2024
- HTML | PDF | Request permission
Abstract:
Classical work of Lee, Schultz, and Stolz relates the smooth transformation groups of exotic spheres to the stable homotopy groups of spheres. In this note, we apply recent progress on the latter to deduce the existence of smooth circle and cyclic group actions on certain exotic spheres.References
- Mark Behrens, Root invariants in the Adams spectral sequence, Trans. Amer. Math. Soc. 358 (2006), no.Β 10, 4279β4341. MR 2231379, DOI 10.1090/S0002-9947-05-03773-6
- Mark Behrens, Some root invariants at the prime 2, Proceedings of the Nishida Fest (Kinosaki 2003), Geom. Topol. Monogr., vol. 10, Geom. Topol. Publ., Coventry, 2007, pp.Β 1β40. MR 2402775, DOI 10.2140/gtm.2007.10.1
- M. Behrens, M. Hill, M. J. Hopkins, and M. Mahowald, Detecting exotic spheres in low dimensions using $\textrm {coker}\,J$, J. Lond. Math. Soc. (2) 101 (2020), no.Β 3, 1173β1218. MR 4111938, DOI 10.1112/jlms.12301
- Robert Burklund, Jeremy Hahn, and Andrew Senger, On the boundaries of highly connected, almost closed manifolds, Acta Math. 231 (2023), no.Β 2, 205β344. MR 4683371, DOI 10.4310/acta.2023.v231.n2.a1
- Eva Belmont and Daniel C. Isaksen, $\Bbb R$-motivic stable stems, J. Topol. 15 (2022), no.Β 4, 1755β1793. MR 4461846, DOI 10.1112/topo.12256
- Mark Behrens, Mark Mahowald, and J. D. Quigley, The 2-primary Hurewicz image of tmf, Geom. Topol. 27 (2023), no.Β 7, 2763β2831. MR 4645486, DOI 10.2140/gt.2023.27.2763
- Glen E. Bredon, A $\Pi _\ast$-module structure for $\Theta _\ast$ and applications to transformation groups, Ann. of Math. (2) 86 (1967), 434β448. MR 221518, DOI 10.2307/1970609
- Robert Burklund, How big are the stable homotopy groups of spheres? with an appendix joint with Andrew Senger, Preprint, arXiv:2203.00670, 2022.
- Wu-chung Hsiang and Wu-yi Hsiang, On compact subgroups of the diffeomorphism groups of Kervaire spheres, Ann. of Math. (2) 85 (1967), 359β369. MR 214083, DOI 10.2307/1970349
- Wu-chung Hsiang and Wu-yi Hsiang, The degree of symmetry of homotopy spheres, Ann. of Math. (2) 89 (1969), 52β67. MR 239621, DOI 10.2307/1970808
- M. A. Hill, M. J. Hopkins, and D. C. Ravenel, On the nonexistence of elements of Kervaire invariant one, Ann. of Math. (2) 184 (2016), no.Β 1, 1β262. MR 3505179, DOI 10.4007/annals.2016.184.1.1
- Wu-yi Hsiang, On the bound of the dimensions of the isometry groups of all possible riemannian metrics on an exotic sphere, Ann. of Math. (2) 85 (1967), 351β358. MR 214084, DOI 10.2307/1970446
- Daniel C. Isaksen, Guozhen Wang, and Zhouli Xu, Stable homotopy groups of spheres, Proc. Natl. Acad. Sci. USA 117 (2020), no.Β 40, 24757β24763. MR 4250190, DOI 10.1073/pnas.2012335117
- Vappala J. Joseph, Smooth actions of the circle group on exotic spheres, Pacific J. Math. 95 (1981), no.Β 2, 323β336. MR 632190, DOI 10.2140/pjm.1981.95.323
- Michel A. Kervaire, A manifold which does not admit any differentiable structure, Comment. Math. Helv. 34 (1960), 257β270. MR 139172, DOI 10.1007/BF02565940
- Michel A. Kervaire and John W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504β537. MR 148075, DOI 10.1090/S0273-0979-2015-01504-1
- Antoni A. Kosinski, Differential manifolds, Pure and Applied Mathematics, vol. 138, Academic Press, Inc., Boston, MA, 1993. MR 1190010
- C. N. Lee, Cyclic group actions on homotopy spheres, Proc. Conf. on Transformation Groups (New Orleans, La., 1967) Springer-Verlag New York, Inc., New York, 1968, pp.Β p. 207. MR 245039
- J. P. Levine, Lectures on groups of homotopy spheres, Algebraic and geometric topology (New Brunswick, N.J., 1983) Lecture Notes in Math., vol. 1126, Springer, Berlin, 1985, pp.Β 62β95. MR 802786, DOI 10.1007/BFb0074439
- H. Blaine Lawson Jr. and Shing Tung Yau, Scalar curvature, non-abelian group actions, and the degree of symmetry of exotic spheres, Comment. Math. Helv. 49 (1974), 232β244. MR 358841, DOI 10.1007/BF02566731
- Mark E. Mahowald and Douglas C. Ravenel, The root invariant in homotopy theory, Topology 32 (1993), no.Β 4, 865β898. MR 1241877, DOI 10.1016/0040-9383(93)90055-Z
- Haynes R. Miller, Douglas C. Ravenel, and W. Stephen Wilson, Periodic phenomena in the Adams-Novikov spectral sequence, Ann. of Math. (2) 106 (1977), no.Β 3, 469β516. MR 458423, DOI 10.2307/1971064
- Douglas C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics, vol. 121, Academic Press, Inc., Orlando, FL, 1986. MR 860042
- Hal Sadofsky, The root invariant and $v_1$-periodic families, Topology 31 (1992), no.Β 1, 65β111. MR 1153239, DOI 10.1016/0040-9383(92)90064-O
- Reinhard Schultz, Circle actions on homotopy spheres bounding plumbing manifolds, Proc. Amer. Math. Soc. 36 (1972), 297β300. MR 309138, DOI 10.1090/S0002-9939-1972-0309138-3
- Reinhard Schultz, Circle actions on homotopy spheres bounding generalized plumbing manifolds, Math. Ann. 205 (1973), 201β210. MR 380852, DOI 10.1007/BF01349230
- Reinhard Schultz, Circle actions on homotopy spheres not bounding spin manifolds, Trans. Amer. Math. Soc. 213 (1975), 89β98. MR 380853, DOI 10.1090/S0002-9947-1975-0380853-6
- Reinhard Schultz, Smooth actions of small groups on exotic spheres, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, RI, 1978, pp.Β 155β160. MR 520503
- Reinhard Schultz, Transformation groups and exotic spheres, Group actions on manifolds (Boulder, Colo., 1983) Contemp. Math., vol. 36, Amer. Math. Soc., Providence, RI, 1985, pp.Β 243β267. MR 780966, DOI 10.1090/conm/036/780966
- Stephan Stolz, Involutions on spheres and Mahowaldβs root invariant, Math. Ann. 281 (1988), no.Β 1, 109β122. MR 944605, DOI 10.1007/BF01449218
- Eldar Straume, Compact differentiable transformation groups on exotic spheres, Math. Ann. 299 (1994), no.Β 2, 355β389. MR 1275773, DOI 10.1007/BF01459789
- Dinesh S. Thakur, A note on numerators of Bernoulli numbers, Proc. Amer. Math. Soc. 140 (2012), no.Β 11, 3673β3676. MR 2944707, DOI 10.1090/S0002-9939-2012-11234-1
Bibliographic Information
- J. D. Quigley
- Affiliation: Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany
- Address at time of publication: Department of Mathematics, University of Virginia, Charlottesville, Virginia 22901
- MR Author ID: 1060017
- ORCID: 0000-0001-8125-0754
- Email: mbp6pj@virginia.edu
- Received by editor(s): October 13, 2022
- Received by editor(s) in revised form: February 10, 2023, August 23, 2023, and August 24, 2023
- Published electronically: February 9, 2024
- Additional Notes: This work was completed with support from an AMS-Simons Travel Grant.
- Communicated by: Julie Bergner
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 1777-1788
- MSC (2020): Primary 55M35, 55Q45, 57S15
- DOI: https://doi.org/10.1090/proc/16662
- MathSciNet review: 4709243