Sandwich groups and (strong) left $3$-Engel elements in groups
HTML articles powered by AMS MathViewer
- by Anastasia Hadjievangelou and Gunnar Traustason;
- Proc. Amer. Math. Soc. 152 (2024), 1467-1477
- DOI: https://doi.org/10.1090/proc/16695
- Published electronically: February 9, 2024
- HTML | PDF | Request permission
Abstract:
In this paper we prove a group theoretic analogue of the well known local nilpotence theorem for sandwich Lie algebras due to Kostrikin and Zel’manov [Trudy Mat. Inst. Steklov. 183 (1990), pp. 106–111, 225]. We introduce the notion of a strong left $3$-Engel element of a group $G$ and show that these are always in the locally nilpotent radical of $G$. This generalises a previous result of Jabara and Traustason [Proc. Amer. Math. Soc. 147 (2019), pp. 1921–1927] that showed that a left $3$-Engel element $a$ of a group $G$ is in the locally nilpotent radical of $G$ whenever $a$ is of odd order.References
- Alireza Abdollahi, Left 3-Engel elements in groups, J. Pure Appl. Algebra 188 (2004), no. 1-3, 1–6. MR 2030802, DOI 10.1016/j.jpaa.2003.10.007
- A. Abdollahi and H. Khosravi, On the right and left 4-Engel elements, Comm. Algebra 38 (2010), no. 3, 933–943. MR 2650379, DOI 10.1080/00927870902887112
- Reinhold Baer, Engelsche elemente Noetherscher Gruppen, Math. Ann. 133 (1957), 256–270 (German). MR 86815, DOI 10.1007/BF02547953
- W. Burnside, On an unsettled question in the theory of discontinous groups, Quart. J. Pure Appl. Math. 37 (1901), 230–238.
- K. W. Gruenberg, The Engel elements of a soluble group, Illinois J. Math. 3 (1959), 151–168. MR 104730, DOI 10.1215/ijm/1255455117
- Anastasia Hadjievangelou and Gunnar Traustason, Left 3-Engel elements in locally finite 2-groups, Comm. Algebra 49 (2021), no. 11, 4869–4882. MR 4304677, DOI 10.1080/00927872.2021.1931265
- Anastasia Hadjievangelou, Marialaura Noce, and Gunnar Traustason, Locally finite $p$-groups with a left 3-Engel element whose normal closure is not nilpotent, Internat. J. Algebra Comput. 31 (2021), no. 1, 135–160. MR 4227233, DOI 10.1142/S0218196721500077
- Hermann Heineken, Eine Bemerkung ĂĽber engelsche Elemente, Arch. Math. (Basel) 11 (1960), 321 (German). MR 125153, DOI 10.1007/BF01236951
- Sergei V. Ivanov, The free Burnside groups of sufficiently large exponents, Internat. J. Algebra Comput. 4 (1994), no. 1-2, ii+308. MR 1283947, DOI 10.1142/S0218196794000026
- A. I. Kostrikin, Vokrug BernsaÄ da, “Nauka”, Moscow, 1986 (Russian). MR 901942
- A. I. Kostrikin, The Burnside problem, Izv. Akad. Nauk SSSR Ser. Mat. 23 (1959), 3–34 (Russian). MR 132100
- E. I. Zel′manov and A. I. Kostrikin, A theorem on sandwich algebras, Trudy Mat. Inst. Steklov. 183 (1990), 106–111, 225 (Russian). Translated in Proc. Steklov Inst. Math. 1991, no. 4, 121–126; Galois theory, rings, algebraic groups and their applications (Russian). MR 1092020
- Enrico Jabara and Gunnar Traustason, Left 3-Engel elements of odd order in groups, Proc. Amer. Math. Soc. 147 (2019), no. 5, 1921–1927. MR 3937670, DOI 10.1090/proc/14389
- I. G. Lysënok, Infinite Burnside groups of even period, Izv. Ross. Akad. Nauk Ser. Mat. 60 (1996), no. 3, 3–224 (Russian, with Russian summary); English transl., Izv. Math. 60 (1996), no. 3, 453–654. MR 1405529, DOI 10.1070/IM1996v060n03ABEH000077
- Martin L. Newell, On right-Engel elements of length three, Proc. Roy. Irish Acad. Sect. A 96 (1996), no. 1, 17–24. MR 1644644
- Marialaura Noce, Gareth Tracey, and Gunnar Traustason, A left 3-Engel element whose normal closure is not nilpotent, J. Pure Appl. Algebra 224 (2020), no. 3, 1092–1101. MR 4009568, DOI 10.1016/j.jpaa.2019.07.004
- I. N. Sanov, Solution of Burnside’s problem for exponent 4, Leningrad State Univ. Annals [Uchenye Zapiski] Math. Ser. 10 (1940), 166–170 (Russian). MR 3397
- Gareth Tracey and Gunnar Traustason, Left 3-Engel elements in groups of exponent 60, Internat. J. Algebra Comput. 28 (2018), no. 4, 673–695. MR 3819828, DOI 10.1142/S0218196718500303
- Gunnar Traustason, Left 3-Engel elements in groups of exponent 5, J. Algebra 414 (2014), 41–71. MR 3223388, DOI 10.1016/j.jalgebra.2014.05.017
- Michael Vaughan-Lee, The restricted Burnside problem, 2nd ed., London Mathematical Society Monographs. New Series, vol. 8, The Clarendon Press, Oxford University Press, New York, 1993. MR 1364414, DOI 10.1093/oso/9780198537861.001.0001
- Michael Vaughan-Lee, Engel-$4$ groups of exponent $5$, Proc. London Math. Soc. (3) 74 (1997), no. 2, 306–334. MR 1425325, DOI 10.1112/S0024611597000117
- E. I. Zel’manov, The solution of the restricted Burnsideproblem for groups of odd exponent, Math. USSR Izvestia 36 (1991), 41–60.
- E. I. Zel’manov, The solution of the restricted Burnside problem for $2$-groups, Mat. Sb. 182 (1991), 568–592.
Bibliographic Information
- Anastasia Hadjievangelou
- Affiliation: Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom
- MR Author ID: 1425301
- Gunnar Traustason
- Affiliation: Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom
- MR Author ID: 341715
- ORCID: 0000-0002-5950-1040
- Received by editor(s): March 26, 2023
- Received by editor(s) in revised form: March 26, 2023, and August 17, 2023
- Published electronically: February 9, 2024
- Communicated by: Martin Liebeck
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 1467-1477
- MSC (2020): Primary 20F45; Secondary 20F12
- DOI: https://doi.org/10.1090/proc/16695
- MathSciNet review: 4709219