A novel witness to incoherence of $\mathrm {SL}_5(\mathbb {Z})$
HTML articles powered by AMS MathViewer
- by Sami Douba;
- Proc. Amer. Math. Soc. 152 (2024), 1451-1455
- DOI: https://doi.org/10.1090/proc/16742
- Published electronically: February 15, 2024
- HTML | PDF | Request permission
Abstract:
Motivated by a question of Stover, we discuss an example of a Zariski-dense finitely generated subgroup of $\mathrm {SL}_5(\mathbb {Z})$ that is not finitely presented.References
- Ian Agol, Criteria for virtual fibering, J. Topol. 1 (2008), no. 2, 269–284. MR 2399130, DOI 10.1112/jtopol/jtn003
- Y. Benoist, Propriétés asymptotiques des groupes linéaires, Geom. Funct. Anal. 7 (1997), no. 1, 1–47 (French, with English and French summaries). MR 1437472, DOI 10.1007/PL00001613
- Yves Benoist, Automorphismes des cônes convexes, Invent. Math. 141 (2000), no. 1, 149–193 (French, with English and French summaries). MR 1767272, DOI 10.1007/PL00005789
- Yves Benoist, Convexes divisibles. II, Duke Math. J. 120 (2003), no. 1, 97–120 (French, with English and French summaries). MR 2010735, DOI 10.1215/S0012-7094-03-12014-1
- Y. Benoist, Convexes divisibles. I, Algebraic groups and arithmetic, Tata Inst. Fund. Res., Mumbai, 2004, pp. 339–374.
- Jean-Paul Benzécri, Sur les variétés localement affines et localement projectives, Bull. Soc. Math. France 88 (1960), 229–332 (French). MR 124005, DOI 10.24033/bsmf.1551
- Nicolas Bergeron, Frédéric Haglund, and Daniel T. Wise, Hyperplane sections in arithmetic hyperbolic manifolds, J. Lond. Math. Soc. (2) 83 (2011), no. 2, 431–448. MR 2776645, DOI 10.1112/jlms/jdq082
- Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York, 1994. Corrected reprint of the 1982 original. MR 1324339
- Kanghyun Choi and Suhyoung Choi, The definability criteria for convex projective polyhedral reflection groups, Geom. Dedicata 175 (2015), 323–346. MR 3323644, DOI 10.1007/s10711-014-9949-3
- Pallavi Dani, Matthew Haulmark, and Genevieve Walsh, Right-angled Coxeter groups with non-planar boundary, Groups Geom. Dyn. 17 (2023), no. 1, 127–155. MR 4563333, DOI 10.4171/ggd/668
- S. Douba and K. Tsouvalas, On regular subgroups of $\mathrm {SL}_3(\mathbb {R})$, Preprint, arXiv:2306.11262, 2023.
- Yves Guivarc’h, Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire, Ergodic Theory Dynam. Systems 10 (1990), no. 3, 483–512 (French, with English summary). MR 1074315, DOI 10.1017/S0143385700005708
- Frédéric Haglund and Daniel T. Wise, Coxeter groups are virtually special, Adv. Math. 224 (2010), no. 5, 1890–1903. MR 2646113, DOI 10.1016/j.aim.2010.01.011
- Michael Kapovich, Noncoherence of arithmetic hyperbolic lattices, Geom. Topol. 17 (2013), no. 1, 39–71. MR 3035323, DOI 10.2140/gt.2013.17.39
- Michael Kapovich and Leonid Potyagailo, On the absence of Ahlfors’ finiteness theorem for Kleinian groups in dimension three, Topology Appl. 40 (1991), no. 1, 83–91. MR 1114093, DOI 10.1016/0166-8641(91)90060-Y
- Michael Kapovich, Leonid Potyagailo, and Ernest Vinberg, Noncoherence of some lattices in $\textrm {Isom}(\Bbb H^n)$, The Zieschang Gedenkschrift, Geom. Topol. Monogr., vol. 14, Geom. Topol. Publ., Coventry, 2008, pp. 335–351. MR 2484708, DOI 10.2140/gtm.2008.14.335
- Akio Kawauchi, A partial Poincaré duality theorem for infinite cyclic coverings, Quart. J. Math. Oxford Ser. (2) 26 (1975), no. 104, 437–458. MR 394691, DOI 10.1093/qmath/26.1.437
- Dawid Kielak, Residually finite rationally solvable groups and virtual fibring, J. Amer. Math. Soc. 33 (2020), no. 2, 451–486. MR 4073866, DOI 10.1090/jams/936
- Folke Lannér, On complexes with transitive groups of automorphisms, Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 11 (1950), 71. MR 42129
- C. Llosa Isenrich, B. Martelli, and P. Py, Hyperbolic groups containing subgroups of type $\mathscr {F}_3$ not $\mathscr {F}_4$, Preprint, arXiv:2112.06531, 2021.
- John W. Milnor, Infinite cyclic coverings, Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967) The Prindle, Weber & Schmidt Complementary Series in Mathematics, Vol. 13, Prindle, Weber & Schmidt, Boston, Mass.-London-Sydney, 1968, pp. 115–133. MR 242163
- G. P. Scott, Compact submanifolds of $3$-manifolds, J. London Math. Soc. (2) 7 (1973), 246–250. MR 326737, DOI 10.1112/jlms/s2-7.2.246
- G. P. Scott, Finitely generated $3$-manifold groups are finitely presented, J. London Math. Soc. (2) 6 (1973), 437–440. MR 380763, DOI 10.1112/jlms/s2-6.3.437
- M. Stover, Coherence and lattices, Emerging Topics on Coherence and Quasi-Convex Subgroups, 2019.
- È. B. Vinberg, Discrete linear groups that are generated by reflections, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 1072–1112 (Russian). MR 302779
- È. B. Vinberg, Hyperbolic groups of reflections, Uspekhi Mat. Nauk 40 (1985), no. 1(241), 29–66, 255 (Russian). MR 783604
- È. B. Vinberg and V. G. Kac, Quasi-homogeneous cones, Mat. Zametki 1 (1967), 347–354 (Russian). MR 208470
- C. T. C. Wall (ed.), Homological group theory, London Mathematical Society Lecture Note Series, vol. 36, Cambridge University Press, Cambridge-New York, 1979. MR 564417
- Daniel T. Wise, An invitation to coherent groups, What’s next?—the mathematical legacy of William P. Thurston, Ann. of Math. Stud., vol. 205, Princeton Univ. Press, Princeton, NJ, 2020, pp. 326–414. MR 4205645, DOI 10.2307/j.ctvthhdvv.16
Bibliographic Information
- Sami Douba
- Affiliation: Institut des Hautes Études Scientifiques, Université Paris-Saclay, 35 route de Chartres, 91440 Bures-sur-Yvette, France
- MR Author ID: 1525911
- ORCID: 0000-0001-7880-5376
- Email: douba@ihes.fr
- Received by editor(s): May 1, 2023
- Received by editor(s) in revised form: August 14, 2023
- Published electronically: February 15, 2024
- Additional Notes: The author was supported by the Huawei Young Talents Program.
- Communicated by: Genevieve S. Walsh
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 1451-1455
- MSC (2020): Primary 20F65; Secondary 20F67, 57M50
- DOI: https://doi.org/10.1090/proc/16742
- MathSciNet review: 4709217