Open loci of ideals with applications to birational maps
HTML articles powered by AMS MathViewer
- by S. Hamid Hassanzadeh and Maral Mostafazadehfard;
- Proc. Amer. Math. Soc. 152 (2024), 1841-1856
- DOI: https://doi.org/10.1090/proc/16665
- Published electronically: March 1, 2024
- HTML | PDF | Request permission
Abstract:
In this work we show that the loci of ideals in principal class, ideals of grade at least two, and ideals of maximal analytic spread are Zariski open sets in the parameter space. As an application, we show that the set of birational maps of clear polynomial degree $d$ over an arbitrary projective variety $X$, denoted by $Bir(X)_{d}$, is a constructible set. This extends a previous result by Blanc and Furter.References
- Cinzia Bisi, Alberto Calabri, and Massimiliano Mella, On plane Cremona transformations of fixed degree, J. Geom. Anal. 25 (2015), no. 2, 1108–1131. MR 3319964, DOI 10.1007/s12220-013-9459-9
- Jérémy Blanc and Jean-Philippe Furter, Topologies and structures of the Cremona groups, Ann. of Math. (2) 178 (2013), no. 3, 1173–1198. MR 3092478, DOI 10.4007/annals.2013.178.3.8
- Jérémy Blanc, Algebraic structures of groups of birational transformations, Algebraic groups: structure and actions, Proc. Sympos. Pure Math., vol. 94, Amer. Math. Soc., Providence, RI, 2017, pp. 17–30. MR 3645066, DOI 10.1090/pspum/094/02
- M. P. Brodmann and R. Y. Sharp, Local cohomology, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 136, Cambridge University Press, Cambridge, 2013. An algebraic introduction with geometric applications. MR 3014449
- Frederick W. Call, A theorem of Grothendieck using Picard groups for the algebraist, Math. Scand. 74 (1994), no. 2, 161–183. MR 1298359, DOI 10.7146/math.scand.a-12487
- Serge Cantat and Stéphane Lamy, Normal subgroups in the Cremona group, Acta Math. 210 (2013), no. 1, 31–94. With an appendix by Yves de Cornulier. MR 3037611, DOI 10.1007/s11511-013-0090-1
- A. V. Doria, S. H. Hassanzadeh, and A. Simis, A characteristic-free criterion of birationality, Adv. Math. 230 (2012), no. 1, 390–413. MR 2900548, DOI 10.1016/j.aim.2011.12.005
- D. Grayson and M. Stillman, Macaulay 2–a system for computation in algebraic geometry and commutative algebra, 1997, Available via anonymous ftp from math.uiuc.edu, 1998.
- Craig Huneke and Irena Swanson, Integral closure of ideals, rings, and modules, London Mathematical Society Lecture Note Series, vol. 336, Cambridge University Press, Cambridge, 2006. MR 2266432
- S. H. Hassanzadeh and A. Simis, Bounds on degrees of birational maps with arithmetically Cohen-Macaulay graphs, J. Algebra 478 (2017), 220–236. MR 3621670, DOI 10.1016/j.jalgebra.2017.01.010
- Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR 879273
- Ivan Pan and Alvaro Rittatore, Some remarks about the Zariski topology of the Cremona group, Preprint, arXiv:1212.5698, 2012.
- Jean-Pierre Serre, Le groupe de Cremona et ses sous-groupes finis, Astérisque 332 (2010), Exp. No. 1000, vii, 75–100 (French, with French summary). Séminaire Bourbaki. Volume 2008/2009. Exposés 997–1011. MR 2648675
- Aron Simis, Cremona transformations and some related algebras, J. Algebra 280 (2004), no. 1, 162–179. MR 2081926, DOI 10.1016/j.jalgebra.2004.03.025
- Aron Simis, Bernd Ulrich, and Wolmer V. Vasconcelos, Codimension, multiplicity and integral extensions, Math. Proc. Cambridge Philos. Soc. 130 (2001), no. 2, 237–257. MR 1806775, DOI 10.1017/S0305004100004667
Bibliographic Information
- S. Hamid Hassanzadeh
- Affiliation: Departamento de Matemática, Centro de Tecnologia, Cidade Universitária da Universidade Federal do Rio de Janeiro, 21941-909 Rio de Janeiro, RJ, Brazil
- MR Author ID: 850876
- ORCID: 0000-0001-8183-6093
- Email: hamid@im.ufrj.br
- Maral Mostafazadehfard
- Affiliation: Departamento de Matemática, Centro de Tecnologia, Cidade Universitária da Universidade Federal do Rio de Janeiro, 21941-909 Rio de Janeiro, RJ, Brazil
- MR Author ID: 1111902
- Email: maral@im.ufrj.br
- Received by editor(s): April 2, 2023
- Received by editor(s) in revised form: September 1, 2023
- Published electronically: March 1, 2024
- Additional Notes: The first and second authors were partially supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)-Finance Code 001. The first author was partially supported by the MathAmSud project “ALGEO” and CNPq Grant Number 406377/2021-9.
- Communicated by: Claudia Polini
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 1841-1856
- MSC (2020): Primary 13A02, 13C05; Secondary 14E05
- DOI: https://doi.org/10.1090/proc/16665
- MathSciNet review: 4728456
Dedicated: Dedicated to Aron Simis on the occasion of his eightieth birthday