Mod $p$ homology of unordered configuration spaces of $p$ points in parallelizable surfaces
HTML articles powered by AMS MathViewer
- by Matthew Chen and Adela YiYu Zhang;
- Proc. Amer. Math. Soc. 152 (2024), 2239-2248
- DOI: https://doi.org/10.1090/proc/16683
- Published electronically: March 1, 2024
- HTML | PDF
Abstract:
We provide a short proof that the dimensions of the mod $p$ homology groups of the unordered configuration space $B_k(T)$ of $k$ points in a closed torus are the same as its Betti numbers for $p>2$ and $k\leq p$. Hence the integral homology has no $p$-power torsion in this range. The same argument works for the once-punctured genus $g$ surface with $g\geq 0$, thereby recovering a result of Brantner-Hahn-Knudsen via Lubin-Tate theory.References
- Omar Antolín Camarena, The $\textrm {mod}\,2$ homology of free spectral Lie algebras, Trans. Amer. Math. Soc. 373 (2020), no. 9, 6301–6319. MR 4155178, DOI 10.1090/tran/8131
- Greg Arone and Mark Mahowald, The Goodwillie tower of the identity functor and the unstable periodic homotopy of spheres, Invent. Math. 135 (1999), no. 3, 743–788. MR 1669268, DOI 10.1007/s002220050300
- Mark Behrens, The Goodwillie tower and the EHP sequence, Mem. Amer. Math. Soc. 218 (2012), no. 1026, xii+90. MR 2976788, DOI 10.1090/S0065-9266-2011-00645-3
- C.-F. Bödigheimer and F. R. Cohen, Rational cohomology of configuration spaces of surfaces, Algebraic topology and transformation groups (Göttingen, 1987) Lecture Notes in Math., vol. 1361, Springer, Berlin, 1988, pp. 7–13. MR 979504, DOI 10.1007/BFb0083031
- C.-F. Bödigheimer, F. R. Cohen, and R. J. Milgram, Truncated symmetric products and configuration spaces, Math. Z. 214 (1993), no. 2, 179–216. MR 1240884, DOI 10.1007/BF02572399
- C.-F. Bödigheimer, F. Cohen, and L. Taylor, On the homology of configuration spaces, Topology 28 (1989), no. 1, 111–123. MR 991102, DOI 10.1016/0040-9383(89)90035-9
- L. Brantner, J. Hahn and B. Knudsen, The Lubin-Tate theory of configuration spaces: I, Preprint, arXiv:1908.11321, 2019.
- R. R. Bruner, J. P. May, J. E. McClure, and M. Steinberger, $H_\infty$ ring spectra and their applications, Lecture Notes in Mathematics, vol. 1176, Springer-Verlag, Berlin, 1986. MR 836132, DOI 10.1007/BFb0075405
- Claude Chevalley and Samuel Eilenberg, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. 63 (1948), 85–124. MR 24908, DOI 10.1090/S0002-9947-1948-0024908-8
- Michael Ching, Bar constructions for topological operads and the Goodwillie derivatives of the identity, Geom. Topol. 9 (2005), 833–933. MR 2140994, DOI 10.2140/gt.2005.9.833
- Frederick R. Cohen, Thomas J. Lada, and J. Peter May, The homology of iterated loop spaces, Lecture Notes in Mathematics, Vol. 533, Springer-Verlag, Berlin-New York, 1976. MR 436146, DOI 10.1007/BFb0080464
- Gabriel C. Drummond-Cole and Ben Knudsen, Betti numbers of configuration spaces of surfaces, J. Lond. Math. Soc. (2) 96 (2017), no. 2, 367–393. MR 3708955, DOI 10.1112/jlms.12066
- Yves Félix and Jean-Claude Thomas, Rational Betti numbers of configuration spaces, Topology Appl. 102 (2000), no. 2, 139–149. MR 1741482, DOI 10.1016/S0166-8641(98)00148-5
- Brenda Johnson, The derivatives of homotopy theory, Trans. Amer. Math. Soc. 347 (1995), no. 4, 1295–1321. MR 1297532, DOI 10.1090/S0002-9947-1995-1297532-6
- Jens Jakob Kjaer, On the odd primary homology of free algebras over the spectral lie operad, J. Homotopy Relat. Struct. 13 (2018), no. 3, 581–597. MR 3856302, DOI 10.1007/s40062-017-0194-y
- Ben Knudsen, Betti numbers and stability for configuration spaces via factorization homology, Algebr. Geom. Topol. 17 (2017), no. 5, 3137–3187. MR 3704255, DOI 10.2140/agt.2017.17.3137
- Ben Knudsen, Higher enveloping algebras, Geom. Topol. 22 (2018), no. 7, 4013–4066. MR 3890770, DOI 10.2140/gt.2018.22.4013
- N. Konovalov, Algebraic Goodwillie spectral sequence, Preprint, arXiv:2303.06240, 2023.
- Igor Kříž, On the rational homotopy type of configuration spaces, Ann. of Math. (2) 139 (1994), no. 2, 227–237. MR 1274092, DOI 10.2307/2946581
- J. P. May, The cohomology of restricted Lie algebras and of Hopf algebras, J. Algebra 3 (1966), 123–146. MR 193126, DOI 10.1016/0021-8693(66)90009-3
- J. P. May, The geometry of iterated loop spaces, Lecture Notes in Mathematics, Vol. 271, Springer-Verlag, Berlin-New York, 1972. MR 420610, DOI 10.1007/BFb0067491
- Dusa McDuff, Configuration spaces of positive and negative particles, Topology 14 (1975), 91–107. MR 358766, DOI 10.1016/0040-9383(75)90038-5
- R. James Milgram and Peter Löffler, The structure of deleted symmetric products, Braids (Santa Cruz, CA, 1986) Contemp. Math., vol. 78, Amer. Math. Soc., Providence, RI, 1988, pp. 415–424. MR 975092, DOI 10.1090/conm/078/975092
- Stewart B. Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970), 39–60. MR 265437, DOI 10.1090/S0002-9947-1970-0265437-8
- Graeme Segal, Configuration-spaces and iterated loop-spaces, Invent. Math. 21 (1973), 213–221. MR 331377, DOI 10.1007/BF01390197
- Burt Totaro, Configuration spaces of algebraic varieties, Topology 35 (1996), no. 4, 1057–1067. MR 1404924, DOI 10.1016/0040-9383(95)00058-5
- A. Y. Zhang, Quillen homology of spectral Lie algebras with application to mod $p$ homology of labeled configuration spaces, Preprint, arXiv:2110.08428, 2021.
Bibliographic Information
- Matthew Chen
- Affiliation: Wayzata High School, Plymouth, Minnesota 55446
- ORCID: 0009-0003-4188-4631
- Email: chenmat001@isd284.com
- Adela YiYu Zhang
- Affiliation: Department of Mathematical Sciences, University of Copenhagen, Denmark
- Email: yz@math.ku.dk
- Received by editor(s): September 5, 2022
- Received by editor(s) in revised form: September 12, 2022, August 12, 2023, and September 22, 2023
- Published electronically: March 1, 2024
- Communicated by: Julie Bergner
- © Copyright 2024 by the authors
- Journal: Proc. Amer. Math. Soc. 152 (2024), 2239-2248
- MSC (2020): Primary 57N65, 55R80, 17B56, 55S99
- DOI: https://doi.org/10.1090/proc/16683
- MathSciNet review: 4728487