Gradient estimates for fundamental solutions of a Schrödinger operator on stratified Lie groups
HTML articles powered by AMS MathViewer
- by Qingze Lin and Huayou Xie;
- Proc. Amer. Math. Soc. 152 (2024), 2069-2085
- DOI: https://doi.org/10.1090/proc/16684
- Published electronically: March 1, 2024
- HTML | PDF | Request permission
Abstract:
Let $\mathcal L=-\Delta _{\mathbb {G}}+\Upsilon$ be a Schrödinger operator with a nonnegative potential $\Upsilon$ belonging to the reverse Hölder class $B_{Q/2}$, where $Q$ is the homogeneous dimension of the stratified Lie group $\mathbb {G}$. Inspired by Shen’s pioneer work and Li’s work, we study fundamental solutions of the Schrödinger operator $\mathcal L$ on the stratified Lie group $\mathbb {G}$ in this paper. By proving an exponential decreasing variant of mean value inequality, we obtain the exponential decreasing upper estimates, the local Hölder estimates and the gradient estimates of the fundamental solutions of the Schrödinger operator $\mathcal L$ on the stratified Lie group. As two applications, we obtain the De Giorgi-Nash-Moser theory on the improved Hölder estimate for the weak solutions of the Schrödinger equation and a Liouville-type lemma for $\mathcal {L}$-harmonic functions on $\mathbb {G}$.References
- Stefano Biagi and Andrea Bonfiglioli, The existence of a global fundamental solution for homogeneous Hörmander operators via a global lifting method, Proc. Lond. Math. Soc. (3) 114 (2017), no. 5, 855–889. MR 3653248, DOI 10.1112/plms.12024
- Stefano Biagi, Andrea Bonfiglioli, and Marco Bramanti, Global estimates for the fundamental solution of homogeneous Hörmander operators, Ann. Mat. Pura Appl. (4) 201 (2022), no. 4, 1875–1934. MR 4454386, DOI 10.1007/s10231-021-01183-6
- Anders Björn and Jana Björn, Nonlinear potential theory on metric spaces, EMS Tracts in Mathematics, vol. 17, European Mathematical Society (EMS), Zürich, 2011. MR 2867756, DOI 10.4171/099
- Andrea Bonfiglioli and Ermanno Lanconelli, Liouville-type theorems for real sub-Laplacians, Manuscripta Math. 105 (2001), no. 1, 111–124. MR 1885817, DOI 10.1007/PL00005872
- Andrea Bonfiglioli, Ermanno Lanconelli, and Francesco Uguzzoni, Fundamental solutions for non-divergence form operators on stratified groups, Trans. Amer. Math. Soc. 356 (2004), no. 7, 2709–2737. MR 2052194, DOI 10.1090/S0002-9947-03-03332-4
- A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Mathematics, Springer, Berlin, 2007. MR 2363343
- Marco Bramanti and Luca Brandolini, Hörmander operators, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, [2023] ©2023. With a foreword by Ermanno Lanconelli. MR 4544986
- L. Caffarelli, E. Fabes, S. Mortola, and S. Salsa, Boundary behavior of nonnegative solutions of elliptic operators in divergence form, Indiana Univ. Math. J. 30 (1981), no. 4, 621–640. MR 620271, DOI 10.1512/iumj.1981.30.30049
- Xuan Thinh Duong, Lixin Yan, and Chao Zhang, On characterization of Poisson integrals of Schrödinger operators with BMO traces, J. Funct. Anal. 266 (2014), no. 4, 2053–2085. MR 3150151, DOI 10.1016/j.jfa.2013.09.008
- J. Dziubański, G. Garrigós, T. Martínez, J. L. Torrea, and J. Zienkiewicz, $BMO$ spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality, Math. Z. 249 (2005), no. 2, 329–356. MR 2115447, DOI 10.1007/s00209-004-0701-9
- Charles L. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 2, 129–206. MR 707957, DOI 10.1090/S0273-0979-1983-15154-6
- G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), no. 2, 161–207. MR 494315, DOI 10.1007/BF02386204
- G. B. Folland, On the Rothschild-Stein lifting theorem, Comm. Partial Differential Equations 2 (1977), no. 2, 165–191. MR 433514, DOI 10.1080/03605307708820028
- G. B. Folland and Elias M. Stein, Hardy spaces on homogeneous groups, Mathematical Notes, vol. 28, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1982. MR 657581
- Daryl Geller, Liouville’s theorem for homogeneous groups, Comm. Partial Differential Equations 8 (1983), no. 15, 1665–1677. MR 729197, DOI 10.1080/03605308308820319
- Lars Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. MR 222474, DOI 10.1007/BF02392081
- Renjin Jiang and Bo Li, Dirichlet problem for Schrödinger equation with the boundary value in the BMO space, Sci. China Math. 65 (2022), no. 7, 1431–1468. MR 4444237, DOI 10.1007/s11425-020-1834-1
- Alessia E. Kogoj, A Liouville-type theorem on half-spaces for sub-Laplacians, Proc. Amer. Math. Soc. 143 (2015), no. 1, 239–248. MR 3272749, DOI 10.1090/S0002-9939-2014-12210-6
- Adam Korányi and Nancy K. Stanton, Liouville-type theorems for some complex hypoelliptic operators, J. Funct. Anal. 60 (1985), no. 3, 370–377. MR 780503, DOI 10.1016/0022-1236(85)90045-X
- Kazuhiro Kurata, An estimate on the heat kernel of magnetic Schrödinger operators and uniformly elliptic operators with non-negative potentials, J. London Math. Soc. (2) 62 (2000), no. 3, 885–903. MR 1794292, DOI 10.1112/S002461070000137X
- Hong-Quan Li, Estimations $L^p$ des opérateurs de Schrödinger sur les groupes nilpotents, J. Funct. Anal. 161 (1999), no. 1, 152–218 (French, with French summary). MR 1670222, DOI 10.1006/jfan.1998.3347
- Chin-Cheng Lin and Heping Liu, $\textrm {BMO}_L(\Bbb H^n)$ spaces and Carleson measures for Schrödinger operators, Adv. Math. 228 (2011), no. 3, 1631–1688. MR 2824565, DOI 10.1016/j.aim.2011.06.024
- Qingze Lin, Gradient estimates for Schrödinger operators with characterizations of $BMO_{\mathcal L }$ on Heisenberg groups, Proc. Amer. Math. Soc. 151 (2023), no. 5, 2127–2142. MR 4556206, DOI 10.1090/proc/16308
- Guozhen Lu, A Fefferman-Phong type inequality for degenerate vector fields and applications, PanAmer. Math. J. 6 (1996), no. 4, 37–57. MR 1414658
- Xuebo Luo, Liouville’s theorem for homogeneous differential operators, Comm. Partial Differential Equations 22 (1997), no. 11-12, 1837–1848. MR 1629494, DOI 10.1080/03605309708821322
- A. Nagel, F. Ricci, and E. M. Stein, Harmonic analysis and fundamental solutions on nilpotent Lie groups, Analysis and partial differential equations, Lecture Notes in Pure and Appl. Math., vol. 122, Dekker, New York, 1990, pp. 249–275. MR 1044793
- J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80 (1958), 931–954. MR 100158, DOI 10.2307/2372841
- Linda Preiss Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), no. 3-4, 247–320. MR 436223, DOI 10.1007/BF02392419
- Zhong Wei Shen, On the Neumann problem for Schrödinger operators in Lipschitz domains, Indiana Univ. Math. J. 43 (1994), no. 1, 143–176. MR 1275456, DOI 10.1512/iumj.1994.43.43007
- Zhong Wei Shen, $L^p$ estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble) 45 (1995), no. 2, 513–546 (English, with English and French summaries). MR 1343560, DOI 10.5802/aif.1463
- Zhongwei Shen, On fundamental solutions of generalized Schrödinger operators, J. Funct. Anal. 167 (1999), no. 2, 521–564. MR 1716207, DOI 10.1006/jfan.1999.3455
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- Francesco Uguzzoni, A Liouville-type theorem on halfspaces for the Kohn Laplacian, Proc. Amer. Math. Soc. 127 (1999), no. 1, 117–123. MR 1458268, DOI 10.1090/S0002-9939-99-04519-0
Bibliographic Information
- Qingze Lin
- Affiliation: School of Mathematics, Sun Yat-sen University, Guangzhou 510275, People’s Republic of China
- ORCID: 0000-0001-9760-9223
- Email: linqz@mail2.sysu.edu.cn
- Huayou Xie
- Affiliation: School of Mathematics, Sun Yat-sen University, Guangzhou 510275, People’s Republic of China
- Email: xiehy33@mail2.sysu.edu.cn
- Received by editor(s): November 3, 2022
- Received by editor(s) in revised form: June 12, 2023, and September 20, 2023
- Published electronically: March 1, 2024
- Additional Notes: The first author was supported by NNSF of China (No. 11801094).
The second author is the corresponding author. - Communicated by: Ariel Barton
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 2069-2085
- MSC (2020): Primary 35J10, 43A80
- DOI: https://doi.org/10.1090/proc/16684
- MathSciNet review: 4728474