Ranicki–Weiss assembly and the Steenrod construction
HTML articles powered by AMS MathViewer
- by Anibal M. Medina-Mardones;
- Proc. Amer. Math. Soc. 152 (2024), 2249-2259
- DOI: https://doi.org/10.1090/proc/16685
- Published electronically: March 14, 2024
- HTML | PDF
Abstract:
It is shown that the Ranicki–Weiss assembly functor, going from chain complex valued presheaves on a simplicial complex to comodules over its Alexander–Whitney coalgebra, factors fully faithfully through the category of comodules over its Steenrod cup-$i$ coalgebra.References
- Dimitri Ara, Andrea Gagna, Viktoriya Ozornova, and Martina Rovelli, A categorical characterization of strong Steiner $\omega$-categories, J. Pure Appl. Algebra 227 (2023), no. 7, Paper No. 107313, 24. MR 4534727, DOI 10.1016/j.jpaa.2022.107313
- Clemens Berger and Benoit Fresse, Combinatorial operad actions on cochains, Math. Proc. Cambridge Philos. Soc. 137 (2004), no. 1, 135–174. MR 2075046, DOI 10.1017/S0305004103007138
- Ronald Brown and Philip J. Higgins, On the algebra of cubes, J. Pure Appl. Algebra 21 (1981), no. 3, 233–260. MR 617135, DOI 10.1016/0022-4049(81)90018-9
- Greg Brumfiel, Anibal Medina-Mardones, and John Morgan, A cochain level proof of Adem relations in the $\textrm {mod}\,2$ Steenrod algebra, J. Homotopy Relat. Struct. 16 (2021), no. 4, 517–562. MR 4343073, DOI 10.1007/s40062-021-00287-3
- Federico Cantero-Morán and Anibal M. Medina-Mardones, An effective proof of the Cartan formula: Odd primes, arXiv:2305.08973, 2023.
- James F. Davis and Wolfgang Lück, Spaces over a category and assembly maps in isomorphism conjectures in $K$- and $L$-theory, $K$-Theory 15 (1998), no. 3, 201–252. MR 1659969, DOI 10.1023/A:1007784106877
- Rocío González-Díaz and Pedro Real, A combinatorial method for computing Steenrod squares, J. Pure Appl. Algebra 139 (1999), no. 1-3, 89–108. Effective methods in algebraic geometry (Saint-Malo, 1998). MR 1700539, DOI 10.1016/S0022-4049(99)00006-7
- Ralph M. Kaufmann and Anibal M. Medina-Mardones, Cochain level May-Steenrod operations, Forum Math. 33 (2021), no. 6, 1507–1526. MR 4333989, DOI 10.1515/forum-2020-0296
- Ralph M. Kaufmann and Anibal M. Medina-Mardones, A combinatorial $E_\infty$-algebra structure on cubical cochains and the Cartan-Serre map, Cah. Topol. Géom. Différ. Catég. 63 (2022), no. 4, 387–424 (English, with English and French summaries). MR 4556595
- Philipp Kühl, Tibor Macko, and Adam Mole, The total surgery obstruction revisited, Münster J. Math. 6 (2013), no. 1, 181–269. MR 3148212
- M. M. Kapranov and V. A. Voevodsky, Combinatorial-geometric aspects of polycategory theory: pasting schemes and higher Bruhat orders (list of results), Cahiers Topologie Géom. Différentielle Catég. 32 (1991), no. 1, 11–27 (English, with French summary). International Category Theory Meeting (Bangor, 1989 and Cambridge, 1990). MR 1130400
- Michael A. Mandell, $E_\infty$ algebras and $p$-adic homotopy theory, Topology 40 (2001), no. 1, 43–94. MR 1791268, DOI 10.1016/S0040-9383(99)00053-1
- Michael A. Mandell, Cochains and homotopy type, Publ. Math. Inst. Hautes Études Sci. 103 (2006), 213–246. MR 2233853, DOI 10.1007/s10240-006-0037-6
- Anibal M. Medina-Mardones, A finitely presented $E_\infty$-prop I: algebraic context, High. Struct. 4 (2020), no. 2, 1–21. MR 4133162, DOI 10.21136/HS.2020.08
- Anibal M. Medina-Mardones, An algebraic representation of globular sets, Homology Homotopy Appl. 22 (2020), no. 2, 135–150. MR 4093174, DOI 10.4310/hha.2020.v22.n2.a8
- Anibal M. Medina-Mardones, An effective proof of the Cartan formula: the even prime, J. Pure Appl. Algebra 224 (2020), no. 12, 106444, 18. MR 4102178, DOI 10.1016/j.jpaa.2020.106444
- Anibal M. Medina-Mardones, A computer algebra system for the study of commutativity up to coherent homotopies, Adv. Stud. Euro-Tbil. Math. J. 14 (2021), no. 4, 147–157. MR 4425165, DOI 10.32513/asetmj/1932200819
- Anibal M. Medina-Mardones, A finitely presented $E_\infty$-prop II: cellular context, High. Struct. 5 (2021), no. 1, 186–203. MR 4367220, DOI 10.21136/HS.2021.05
- Anibal M. Medina-Mardones, An axiomatic characterization of Steenrod’s cup-$i$ products, arXiv:1810.06505, 2022.
- Anibal M. Medina-Mardones, New formulas for cup-$i$ products and fast computation of Steenrod squares, Comput. Geom. 109 (2023), Paper No. 101921, 16. MR 4473678, DOI 10.1016/j.comgeo.2022.101921
- Anibal M. Medina-Mardones, Andrea Pizzi, and Paolo Salvatore, Multisimplicial chains and configuration spaces, Homotopy Relat. Struct. (to appear), arXiv:2012.02060, 2023.
- James E. McClure and Jeffrey H. Smith, Multivariable cochain operations and little $n$-cubes, J. Amer. Math. Soc. 16 (2003), no. 3, 681–704. MR 1969208, DOI 10.1090/S0894-0347-03-00419-3
- Daniel Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205–295. MR 258031, DOI 10.2307/1970725
- Andrew Ranicki, The total surgery obstruction, Algebraic topology, Aarhus 1978 (Proc. Sympos., Univ. Aarhus, Aarhus, 1978) Lecture Notes in Math., vol. 763, Springer, Berlin, 1979, pp. 275–316. MR 561227
- A. A. Ranicki, Algebraic $L$-theory and topological manifolds, Cambridge Tracts in Mathematics, vol. 102, Cambridge University Press, Cambridge, 1992. MR 1211640
- Pedro Real, On the computability of the Steenrod squares, Ann. Univ. Ferrara Sez. VII (N.S.) 42 (1996), 57–63 (1998) (English, with English and Italian summaries). MR 1622630, DOI 10.1007/BF02955020
- Andrew Ranicki and Michael Weiss, Chain complexes and assembly, Math. Z. 204 (1990), no. 2, 157–185. MR 1055984, DOI 10.1007/BF02570866
- Richard Steiner, Omega-categories and chain complexes, Homology Homotopy Appl. 6 (2004), no. 1, 175–200. MR 2061574, DOI 10.4310/HHA.2004.v6.n1.a12
- N. E. Steenrod, Products of cocycles and extensions of mappings, Ann. of Math. (2) 48 (1947), 290–320. MR 22071, DOI 10.2307/1969172
- Ross Street, The algebra of oriented simplexes, J. Pure Appl. Algebra 49 (1987), no. 3, 283–335. MR 920944, DOI 10.1016/0022-4049(87)90137-X
- Dennis Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331 (1978). MR 646078, DOI 10.1007/BF02684341
- Michael Weiss and Bruce Williams, Assembly, Novikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach, 1993) London Math. Soc. Lecture Note Ser., vol. 227, Cambridge Univ. Press, Cambridge, 1995, pp. 332–352. MR 1388318, DOI 10.1017/CBO9780511629365.014
Bibliographic Information
- Anibal M. Medina-Mardones
- Affiliation: Department of Mathematics, Western University, Ontario, Canada
- MR Author ID: 1380400
- Email: anibal.medina.mardones@uwo.ca
- Received by editor(s): November 3, 2022
- Received by editor(s) in revised form: July 11, 2023, and October 1, 2023
- Published electronically: March 14, 2024
- Additional Notes: Partial support for this project was provided by grant ANR 20 CE40 0016 01 PROJET HighAGT
- Communicated by: Julie Bergner
- © Copyright 2024 by the author
- Journal: Proc. Amer. Math. Soc. 152 (2024), 2249-2259
- MSC (2020): Primary 55U10, 55U15, 18F20, 57R67
- DOI: https://doi.org/10.1090/proc/16685
- MathSciNet review: 4728488