The excellence of function fields of conics
HTML articles powered by AMS MathViewer
- by Ahmed Laghribi and Diksha Mukhija;
- Proc. Amer. Math. Soc. 152 (2024), 1915-1923
- DOI: https://doi.org/10.1090/proc/16690
- Published electronically: March 14, 2024
- HTML | PDF
Abstract:
Let $F$ be a field of characteristic $2$. Our aim in this paper is to prove that the extension given by the function field of a singular conic is excellent for bilinear forms. We also give examples showing that in general this extension is not excellent for quadratic forms of arbitrary dimension.References
- R. Baeza, Comparing $u$-invariants of fields of characteristic $2$, Bol. Soc. Brasil. Mat. 13 (1982), no. 1, 105–114. MR 692281, DOI 10.1007/BF02584739
- Richard Elman, Nikita Karpenko, and Alexander Merkurjev, The algebraic and geometric theory of quadratic forms, American Mathematical Society Colloquium Publications, vol. 56, American Mathematical Society, Providence, RI, 2008. MR 2427530, DOI 10.1090/coll/056
- Richard Elman, T. Y. Lam, and Adrian R. Wadsworth, Amenable fields and Pfister extensions, Conference on Quadratic Forms—1976 (Proc. Conf., Queen’s Univ., Kingston, Ont., 1976) Queen’s Papers in Pure and Appl. Math., No. 46, Queen’s Univ., Kingston, ON, 1977, pp. 445–492. With an appendix “Excellence of $F(\varphi )/F$ for 2-fold Pfister forms” by J. K. Arason. MR 560497
- Detlev W. Hoffmann, Witt kernels of bilinear forms for algebraic extensions in characteristic 2, Proc. Amer. Math. Soc. 134 (2006), no. 3, 645–652. MR 2180880, DOI 10.1090/S0002-9939-05-08175-X
- Detlev W. Hoffmann, Witt kernels of quadratic forms for multiquadratic extensions in characteristic 2, Proc. Amer. Math. Soc. 143 (2015), no. 12, 5073–5082. MR 3411127, DOI 10.1090/proc/12651
- Detlev W. Hoffmann and Ahmed Laghribi, Quadratic forms and Pfister neighbors in characteristic 2, Trans. Amer. Math. Soc. 356 (2004), no. 10, 4019–4053. MR 2058517, DOI 10.1090/S0002-9947-04-03461-0
- Detlev W. Hoffmann and Ahmed Laghribi, Isotropy of quadratic forms over the function field of a quadric in characteristic 2, J. Algebra 295 (2006), no. 2, 362–386. MR 2194958, DOI 10.1016/j.jalgebra.2004.02.038
- Ahmed Laghribi, Certaines formes quadratiques de dimension au plus 6 et corps des fonctions en caractéristique 2, Israel J. Math. 129 (2002), 317–361 (French, with English summary). MR 1910948, DOI 10.1007/BF02773169
- A. Laghribi, Witt kernels of function field extensions in characteristic 2, J. Pure Appl. Algebra 199 no. 1–3 (2005), 167–182.
- A. Laghribi, Sur le déploiement des formes bilinéaires en caractéristique 2, Pacific J. Math. 232 (2007), no. 1, 207–232.
- A. Laghribi, Isotropie d’une forme bilinéaire d’Albert sur le corps de fonctions d’une quadrique en caractéristique 2, J. Algebra 355 (2012), no. 1, 1–8.
- A. Laghribi and D. Mukhija, On the descent for quadratic and bilinear forms, Preprint, https://hal-univ-artois.archives-ouvertes.fr/hal-04084290, 2023.
- A. Laghribi and D. Mukhija, On the excellence problem for quartic extensions, Preprint, 2024.
- Markus Rost, On quadratic forms isotropic over the function field of a conic, Math. Ann. 288 (1990), no. 3, 511–513. MR 1079875, DOI 10.1007/BF01444545
Bibliographic Information
- Ahmed Laghribi
- Affiliation: Univ. Artois, UR 2462, Laboratoire de Mathématiques de Lens (LML), F-62300 Lens, France
- MR Author ID: 611076
- Email: ahmed.laghribi@univ-artois.fr
- Diksha Mukhija
- Affiliation: Department of Mathematical and Statistical Sciences, University of Alberta, 632 Central Academic Building, Edmonton, Alberta T6G 2G1, Canada
- MR Author ID: 1408765
- ORCID: 0000-0002-5548-6146
- Email: diksha.mukhija@gmail.com
- Received by editor(s): July 24, 2023
- Received by editor(s) in revised form: September 29, 2023, and October 2, 2023
- Published electronically: March 14, 2024
- Communicated by: David Savitt
- © Copyright 2024 by the authors
- Journal: Proc. Amer. Math. Soc. 152 (2024), 1915-1923
- MSC (2020): Primary 11E04, 11E81
- DOI: https://doi.org/10.1090/proc/16690
- MathSciNet review: 4728462