Domination of semigroups generated by regular forms
HTML articles powered by AMS MathViewer
- by Sahiba Arora, Ralph Chill and Jean-Daniel Djida;
- Proc. Amer. Math. Soc. 152 (2024), 2117-2129
- DOI: https://doi.org/10.1090/proc/16702
- Published electronically: March 14, 2024
- HTML | PDF | Request permission
Abstract:
We give a representation for regular forms associated with dominated $C_0$-semigroups which, in turn, characterizes the domination of $C_0$-semigroups associated with regular forms. In addition, we prove a relationship between the positivity of (dominated) $C_0$-semigroups and the locality of the associated forms.References
- Khalid Akhlil, Locality and domination of semigroups, Results Math. 73 (2018), no. 2, Paper No. 59, 11. MR 3783548, DOI 10.1007/s00025-018-0822-9
- Guy Allain, Sur la représentation des formes de Dirichlet, Ann. Inst. Fourier (Grenoble) 25 (1975), no. 3-4, xix, 1–10 (French). MR 404662, DOI 10.5802/aif.597
- Lars-Erik Andersson, On the representation of Dirichlet forms, Ann. Inst. Fourier (Grenoble) 25 (1975), no. 3-4, xiii, 11–25 (English, with French summary). MR 417436, DOI 10.5802/aif.571
- Wolfgang Arendt and Mahamadi Warma, Dirichlet and Neumann boundary conditions: What is in between?, J. Evol. Equ. 3 (2003), no. 1, 119–135 Dedicated to Philippe Bénilan, \PrintDOI{\ArendtDOI}.
- Sahiba Arora and Jochen Glück, Spectrum and convergence of eventually positive operator semigroups, Semigroup Forum 103 (2021), no. 3, 791–811. MR 4331117, DOI 10.1007/s00233-021-10204-y
- Sahiba Arora and Jochen Glück, Criteria for eventual domination of operator semigroups and resolvents, IWOTA Lancaster (to appear) arXiv:2204.00146v3, 2022.
- Ralph Chill and Mahamadi Warma, Dirichlet and Neumann boundary conditions for the $p$-Laplace operator: what is in between?, Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), no. 5, 975–1002. MR 2981020, DOI 10.1017/S030821051100028X
- Burkhard Claus, Energy spaces, Dirichlet forms and capacities in a nonlinear setting, Potential Anal. 58 (2023), no. 1, 159–179. MR 4535921, DOI 10.1007/s11118-021-09935-y
- Burkhard Claus, Nonlinear Dirichlet forms, Ph.D. Thesis, Technical University Dresden, Dresden, 2021, https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-758918.
- Daniel Daners, Non-positivity of the semigroup generated by the Dirichlet-to-Neumann operator, Positivity 18 (2014), no. 2, 235–256. MR 3215178, DOI 10.1007/s11117-013-0243-7
- Daniel Daners and Jochen Glück, The role of domination and smoothing conditions in the theory of eventually positive semigroups, Bull. Aust. Math. Soc. 96 (2017), no. 2, 286–298. MR 3703910, DOI 10.1017/S0004972717000260
- Daniel Daners and Jochen Glück, A criterion for the uniform eventual positivity of operator semigroups, Integral Equations Operator Theory 90 (2018), no. 4, Paper No. 46, 19. MR 3818344, DOI 10.1007/s00020-018-2478-y
- Daniel Daners and Jochen Glück, Towards a perturbation theory for eventually positive semigroups, J. Operator Theory 79 (2018), no. 2, 345–372. MR 3803561, DOI 10.7900/jot
- Daniel Daners, Jochen Glück, and James B. Kennedy, Eventually and asymptotically positive semigroups on Banach lattices, J. Differential Equations 261 (2016), no. 5, 2607–2649. MR 3507982, DOI 10.1016/j.jde.2016.05.007
- Daniel Daners, Jochen Glück, and James B. Kennedy, Eventually positive semigroups of linear operators, J. Math. Anal. Appl. 433 (2016), no. 2, 1561–1593. MR 3398779, DOI 10.1016/j.jmaa.2015.08.050
- Robert Dautray and Jacques-Louis Lions, Mathematical analysis and numerical methods for science and technology. Vol. 5, Springer-Verlag, Berlin, 1992. Evolution problems. I; With the collaboration of Michel Artola, Michel Cessenat and Hélène Lanchon; Translated from the French by Alan Craig. MR 1156075, DOI 10.1007/978-3-642-58090-1
- E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1989. MR 990239, DOI 10.1017/CBO9780511566158
- Andreas Defant and Klaus Floret, Tensor norms and operator ideals, North-Holland Mathematics Studies, vol. 176, North-Holland Publishing Co., Amsterdam, 1993. MR 1209438
- D. H. Fremlin, Tensor products of Archimedean vector lattices, Amer. J. Math. 94 (1972), 777–798. MR 312203, DOI 10.2307/2373758
- Masatoshi Fukushima, Yoichi Oshima, and Masayoshi Takeda, Dirichlet forms and symmetric Markov processes, Second revised and extended edition, De Gruyter Studies in Mathematics, vol. 19, Walter de Gruyter & Co., Berlin, 2011. MR 2778606
- Peter Meyer-Nieberg, Banach lattices, Universitext, Springer-Verlag, Berlin, 1991. MR 1128093, DOI 10.1007/978-3-642-76724-1
- El Maati Ouhabaz, Analysis of heat equations on domains, London Mathematical Society Monographs, vol. 30, Princeton University Press, Princeton, 2004, \PrintDOI{10.1515/9781400826483}.
- Michael Reed and Barry Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 493421
Bibliographic Information
- Sahiba Arora
- Affiliation: Department of Applied Mathematics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- MR Author ID: 1472176
- ORCID: 0000-0003-1973-8358
- Email: s.arora-1@utwente.nl
- Ralph Chill
- Affiliation: Institut für Analysis, Fakultät Mathematik, TU Dresden, 01062 Dresden, Germany
- MR Author ID: 628534
- ORCID: 0000-0002-6854-0586
- Email: ralph.chill@tu-dresden.de
- Jean-Daniel Djida
- Affiliation: Department Mathematic, Lehrstuhl fur Dynamics, Control, Machine Learning and Numerics, Friedrich-Alexander-Universitat Erlangen-Nurnberg (FAU), Cauerstr. 11, 91058 Erlangen, Germany
- MR Author ID: 1112241
- Email: jean-daniel.djida@fau.de
- Received by editor(s): April 18, 2023
- Received by editor(s) in revised form: April 20, 2023, September 5, 2023, and October 11, 2023
- Published electronically: March 14, 2024
- Additional Notes: The first and the third authors were supported by Deutscher Akademischer Austauschdienst.
- Communicated by: Nageswari Shanmugalingam
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 2117-2129
- MSC (2020): Primary 47D03, 31C15
- DOI: https://doi.org/10.1090/proc/16702
- MathSciNet review: 4728477