A new property of the Wallis power function
HTML articles powered by AMS MathViewer
- by Zhen-Hang Yang and Jing-Feng Tian;
- Proc. Amer. Math. Soc. 152 (2024), 2021-2034
- DOI: https://doi.org/10.1090/proc/16735
- Published electronically: March 1, 2024
- HTML | PDF | Request permission
Abstract:
The Wallis power function is defined on $\left ( -\min \left \{ p,q\right \},\infty \right )$ by \begin{equation*} W_{p,q}\left ( x\right ) =\left ( \dfrac {\Gamma \left ( x+p\right ) }{\Gamma \left ( x+q\right ) }\right ) ^{1/\left ( p-q\right ) }\text { if }p\neq q\text { and }W_{p,p}\left ( x\right ) =e^{\psi \left ( x+p\right ) }. \end{equation*} Let $p_{i},q_{i}\in \mathbb {R}$ with $0<\delta _{i}=p_{i}-q_{i}\leq 1$, $\theta _{i}=\left ( 1-\delta _{i}\right ) /2$ for $i=1,2$ and $p_{1}+q_{1}=p_{2}+q_{2}=2\sigma +1$. We prove that, if $q_{1}>q_{2}$ then for any integer $m\in \mathbb {N}$, the function \begin{equation*} x\mapsto \left ( -1\right ) ^{m}\left [ \ln \frac {W_{p_{1},q_{1}}\left ( x\right ) }{W_{p_{2},q_{2}}\left ( x\right ) }-\sum _{k=1}^{m}\frac {a_{2k}\left ( \theta _{1},\theta _{2}\right ) }{\left ( 2k+1\right ) \left ( 2k\right ) \left ( x+\sigma \right ) ^{2k}}\right ] \end{equation*} is completely monotonic on $\left ( -\sigma ,\infty \right )$, where \begin{equation*} a_{2k}\left ( \theta _{1},\theta _{2}\right ) =\frac {B_{2k+1}\left ( \theta _{2}\right ) }{\theta _{2}-1/2}-\frac {B_{2k+1}\left ( \theta _{1}\right ) }{\theta _{1}-1/2}. \end{equation*} This extends and generalizes some known results.References
- Serge Bernstein, Sur les fonctions absolument monotones, Acta Math. 52 (1929), no. 1, 1–66 (French). MR 1555269, DOI 10.1007/BF02547400
- David Vernon Widder, The Laplace Transform, Princeton Mathematical Series, vol. 6, Princeton University Press, Princeton, NJ, 1941. MR 5923
- R. D. Atanassov and U. V. Tsoukrovski, Some properties of a class of logarithmically completely monotonic functions, C. R. Acad. Bulgare Sci. 41 (1988), no. 2, 21–23. MR 939205
- Feng Qi and Chao-Ping Chen, A complete monotonicity property of the gamma function, J. Math. Anal. Appl. 296 (2004), no. 2, 603–607. MR 2075188, DOI 10.1016/j.jmaa.2004.04.026
- M. Abramowitz and I. A. Stegun (Eds), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 10th printing, Dover Publications, New York and Washington, 1972.
- Tomislav Burić and Neven Elezović, Bernoulli polynomials and asymptotic expansions of the quotient of gamma functions, J. Comput. Appl. Math. 235 (2011), no. 11, 3315–3331. MR 2784046, DOI 10.1016/j.cam.2011.01.045
- J. S. Frame, An approximation to the quotient of gamma functions, Amer. Math. Monthly 56 (1949), 529–535. MR 32197, DOI 10.2307/2305527
- F. G. Tricomi and A. Erdélyi, The asymptotic expansion of a ratio of gamma functions, Pacific J. Math. 1 (1951), 133–142. MR 43948, DOI 10.2140/pjm.1951.1.133
- G. N. Watson, A note on Gamma functions, Proc. Edinburgh Math. Soc. (2) 11 (1958/59), no. Edinburgh Math. Notes 42 (misprinted 41) (1959), 7–9. MR 117358
- Jerry L. Fields, A note on the asymptotic expansion of a ratio of gamma functions, Proc. Edinburgh Math. Soc. (2) 15 (1966), 43–45. MR 200486, DOI 10.1017/S0013091500013171
- J. L. Fields, The uniform asymptotic expansion of a ratio of gamma functions, Constructive theory of functions (Proc. Internat. Conf., Varna, 1970) Bulgar. Akad. Nauk, Sofia, 1972, pp. 171–176. MR 399527
- Yudell L. Luke, On the ratio of two gamma functions, Jñānābha 9/10 (1980), 143–148. MR 683706
- C. L. Frenzen, Error bounds for asymptotic expansions of the ratio of two gamma functions, SIAM J. Math. Anal. 18 (1987), no. 3, 890–896. MR 883576, DOI 10.1137/0518067
- F. W. J. Olver, On an asymptotic expansion of a ratio of gamma functions, Proc. Roy. Irish Acad. Sect. A 95 (1995), no. 1, 5–9. MR 1369039
- Julio Abad and Javier Sesma, Two new asymptotic expansions of the ratio of two gamma functions, J. Comput. Appl. Math. 173 (2005), no. 2, 359–363. MR 2102901, DOI 10.1016/j.cam.2004.03.017
- A. Laforgia and P. Natalini, On the asymptotic expansion of a ratio of gamma functions, J. Math. Anal. Appl. 389 (2012), no. 2, 833–837. MR 2879261, DOI 10.1016/j.jmaa.2011.12.025
- Chao-Ping Chen, Neven Elezović, and Lenka Vukšić, Asymptotic formulae associated with the Wallis power function and digamma function, J. Class. Anal. 2 (2013), no. 2, 151–166. MR 3322250, DOI 10.7153/jca-02-13
- Tomislav Burić, Neven Elezović, and Ratko Šimić, Asymptotic expansions of the multiple quotients of gamma functions with applications, Math. Inequal. Appl. 16 (2013), no. 4, 1159–1170. MR 3156488, DOI 10.7153/mia-16-90
- Tomislav Burić, Neven Elezović, and Lenka Vukšić, Asymptotic expansions of the gamma function and Wallis function through polygamma functions, Integral Transforms Spec. Funct. 25 (2014), no. 2, 163–172. MR 3172030, DOI 10.1080/10652469.2013.830116
- Zhen-Hang Yang, Jing-Feng Tian, and Ming-Hu Ha, A new asymptotic expansion of a ratio of two gamma functions and complete monotonicity for its remainder, Proc. Amer. Math. Soc. 148 (2020), no. 5, 2163–2178. MR 4078101, DOI 10.1090/proc/14917
- Jing-Feng Tian and Zhenhang Yang, Asymptotic expansions of Gurland’s ratio and sharp bounds for their remainders, J. Math. Anal. Appl. 493 (2021), no. 2, Paper No. 124545, 19. MR 4144294, DOI 10.1016/j.jmaa.2020.124545
- Neven Elezović, Asymptotic expansions of gamma and related functions, binomial coefficients, inequalities and means, J. Math. Inequal. 9 (2015), no. 4, 1001–1054. MR 3360153, DOI 10.7153/jmi-09-81
- C. Radhakrishna Rao, Information and the accuracy attainable in the estimation of statistical parameters, Bull. Calcutta Math. Soc. 37 (1945), 81–91. MR 15748
- John Gurland, An inequality satisfied by the Gamma function, Skand. Aktuarietidskr. 39 (1956), 171–172. MR 95293, DOI 10.1080/03461238.1956.10414947
- Ingram Olkin, An inequality satisfied by the gamma function, Skand. Aktuarietidskr. 1958 (1958), 37–39 (1959). MR 105517, DOI 10.1080/03461238.1958.10405978
- Walter Gautschi, Some elementary inequalities relating to the gamma and incomplete gamma function, J. Math. and Phys. 38 (1959/60), 77–81. MR 103289, DOI 10.1002/sapm195938177
- A. V. Boyd, Gurland’s inequality for the gamma function, Skand. Aktuarietidskr. 1960 (1960), 134–135 (1961). MR 132212, DOI 10.1080/03461238.1960.10410585
- C. J. Everett, Inequalities for the Wallis product, Math. Mag. 43 (1970), 30–33. MR 259176, DOI 10.2307/2688108
- D. Kershaw, Some extensions of W. Gautschi’s inequalities for the gamma function, Math. Comp. 41 (1983), no. 164, 607–611. MR 717706, DOI 10.1090/S0025-5718-1983-0717706-5
- Neven Elezović, Carla Giordano, and Josip Pec̆arić, The best bounds in Gautschi’s inequality, Math. Inequal. Appl. 3 (2000), no. 2, 239–252. MR 1749300, DOI 10.7153/mia-03-26
- Neven Elezović and Josip Pec̆arić, Differential and integral $f$-means and applications to digamma function, Math. Inequal. Appl. 3 (2000), no. 2, 189–196. MR 1749296, DOI 10.7153/mia-03-22
- D. Kershaw, Upper and lower bounds for a ratio involving the gamma function, Anal. Appl. (Singap.) 3 (2005), no. 3, 293–295. MR 2155688, DOI 10.1142/S0219530505000583
- M. Merkle, Gurland’s ratio for the gamma function, Comput. Math. Appl. 49 (2005), no. 2-3, 389–406. MR 2123415, DOI 10.1016/j.camwa.2004.01.016
- Feng Qi, A class of logarithmically completely monotonic functions and the best bounds in the first Kershaw’s double inequality, J. Comput. Appl. Math. 206 (2007), no. 2, 1007–1014. MR 2333728, DOI 10.1016/j.cam.2006.09.005
- Feng Qi and Bai-Ni Guo, A class of logarithmically completely monotonic functions and the best bounds in the second Kershaw’s double inequality, J. Comput. Appl. Math. 212 (2008), no. 2, 444–456. MR 2383033, DOI 10.1016/j.cam.2006.12.022
- Feng Qi, Bounds for the ratio of two gamma functions, J. Inequal. Appl. , posted on (2010), Art. ID 493058, 84. MR 2611044, DOI 10.1155/2010/493058
- Feng Qi and Qiu-Ming Luo, Bounds for the ratio of two gamma functions: from Wendel’s asymptotic relation to Elezović-Giordano-Pečarić’s theorem, J. Inequal. Appl. , posted on (2013), 2013:542, 20. MR 3339476, DOI 10.1186/1029-242x-2013-542
- F. Qi, Bounds for the ratio of two gamma functions: from Gautschi’s and Kershaw’s inequalities to complete monotonicity, Turkish J. Anal. Number Theory 2 (2014), no. 5, 152–164, DOI 10.12691/tjant-2-5-1.
- Joaquin Bustoz and Mourad E. H. Ismail, On gamma function inequalities, Math. Comp. 47 (1986), no. 176, 659–667. MR 856710, DOI 10.1090/S0025-5718-1986-0856710-6
- Arcadii Z. Grinshpan and Mourad E. H. Ismail, Completely monotonic functions involving the gamma and $q$-gamma functions, Proc. Amer. Math. Soc. 134 (2006), no. 4, 1153–1160. MR 2196051, DOI 10.1090/S0002-9939-05-08050-0
- Feng Qi, Qiao Yang, and Wei Li, Two logarithmically completely monotonic functions connected with gamma function, Integral Transforms Spec. Funct. 17 (2006), no. 7, 539–542. MR 2242416, DOI 10.1080/10652460500422379
- Feng Qi, A class of logarithmically completely monotonic functions and application to the best bounds in the second Gautschi-Kershaw’s inequality, J. Comput. Appl. Math. 224 (2009), no. 2, 538–543. MR 2492886, DOI 10.1016/j.cam.2008.05.030
- Chao-Ping Chen and Richard B. Paris, Inequalities, asymptotic expansions and completely monotonic functions related to the gamma function, Appl. Math. Comput. 250 (2015), 514–529. MR 3285558, DOI 10.1016/j.amc.2014.11.010
- Chao-Ping Chen and Junesang Choi, Completely monotonic functions related to Gurland’s ratio for the gamma function, Math. Inequal. Appl. 20 (2017), no. 3, 651–659. MR 3653912, DOI 10.7153/mia-20-43
- Zhen-Hang Yang and Shen-Zhou Zheng, Complete monotonicity involving some ratios of gamma functions, J. Inequal. Appl. , posted on (2017), Paper No. 255, 17. MR 3711629, DOI 10.1186/s13660-017-1527-4
- Zhen-Hang Yang and Jing-Feng Tian, A class of completely mixed monotonic functions involving the gamma function with applications, Proc. Amer. Math. Soc. 146 (2018), no. 11, 4707–4721. MR 3856139, DOI 10.1090/proc/14199
- Zhenhang Yang and Jing-Feng Tian, A comparison theorem for two divided differences and applications to special functions, J. Math. Anal. Appl. 464 (2018), no. 1, 580–595. MR 3794106, DOI 10.1016/j.jmaa.2018.04.024
- Zhen-Hang Yang and Shen-Zhou Zheng, Complete monotonicity and inequalites involving Gurland’s ratios of gamma functions, Math. Inequal. Appl. 22 (2019), no. 1, 97–109. MR 3905973, DOI 10.7153/mia-2019-22-07
- Zhen-Hang Yang, Bo-Yan Xi, and Shen-Zhou Zheng, Some properties of the generalized Gaussian ratio and their applications, Math. Inequal. Appl. 23 (2020), no. 1, 177–200. MR 4061534, DOI 10.7153/mia-2020-23-15
- Zhenhang Yang and Jing-Feng Tian, Complete monotonicity of the remainder of the asymptotic series for the ratio of two gamma functions, J. Math. Anal. Appl. 517 (2023), no. 2, Paper No. 126649, 15. MR 4477953, DOI 10.1016/j.jmaa.2022.126649
- Feng Qi and Ravi P. Agarwal, On complete monotonicity for several classes of functions related to ratios of gamma functions, J. Inequal. Appl. , posted on (2019), Paper No. 36, 42. MR 3908972, DOI 10.1186/s13660-019-1976-z
- Zhen-Hang Yang, Approximations for certain hyperbolic functions by partial sums of their Taylor series and completely monotonic functions related to gamma function, J. Math. Anal. Appl. 441 (2016), no. 2, 549–564. MR 3491542, DOI 10.1016/j.jmaa.2016.04.029
- Horst Alzer, On some inequalities for the gamma and psi functions, Math. Comp. 66 (1997), no. 217, 373–389. MR 1388887, DOI 10.1090/S0025-5718-97-00807-7
Bibliographic Information
- Zhen-Hang Yang
- Affiliation: State Grid Zhejiang Electric Power Company Research Institute, Hangzhou, Zhejiang 310014, People’s Republic of China
- MR Author ID: 252484
- ORCID: 0000-0002-2719-4728
- Email: yzhkm@163.com
- Jing-Feng Tian
- Affiliation: Department of Mathematics and Physics, Hebei Key Laboratory of Physics and Energy Technology, North China Electric Power University, Baoding, Hebei 071003, People’s Republic of China
- MR Author ID: 883754
- ORCID: 0000-0002-0631-038X
- Email: tianjf@ncepu.edu.cn
- Received by editor(s): May 13, 2023
- Received by editor(s) in revised form: September 7, 2023, and September 9, 2023
- Published electronically: March 1, 2024
- Additional Notes: The second author is the corresponding author.
- Communicated by: Mourad Ismail
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 2021-2034
- MSC (2020): Primary 41A60, 33B15; Secondary 26A48, 26D15
- DOI: https://doi.org/10.1090/proc/16735
- MathSciNet review: 4728471