Topological aspects of the ideal theory in rings of integer-valued polynomials
HTML articles powered by AMS MathViewer
- by Carmelo Antonio Finocchiaro and K. Alan Loper;
- Proc. Amer. Math. Soc. 152 (2024), 1809-1819
- DOI: https://doi.org/10.1090/proc/16740
- Published electronically: March 26, 2024
- HTML | PDF | Request permission
Abstract:
Let $D$ be a Dedekind domain with finite residue fields. We provide topological insights into certain classes of ideals of $Int(D)$ lying over a given maximal ideal $\mathfrak m$ of $D$. We completely determine invertible/divisorial ideals in terms of topological properties of subsets of the $\mathfrak m$-adic completion of $D$. Moreover, these results are naturally extended to overrings of $Int(D)$. As an application we provide explicit constructions of divisorial ideals of $Int(D)$ which are not finitely generated.References
- M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 242802
- Demetrios Brizolis, Hilbert rings of integral-valued polynomials, Comm. Algebra 3 (1975), no. 12, 1051–1081. MR 389867, DOI 10.1080/00927877508822087
- Demetrios Brizolis, Ideals in rings of integer valued polynomials, J. Reine Angew. Math. 285 (1976), 28–52. MR 414542, DOI 10.1515/crll.1976.285.28
- Paul-Jean Cahen and Jean-Luc Chabert, Integer-valued polynomials, Mathematical Surveys and Monographs, vol. 48, American Mathematical Society, Providence, RI, 1997. MR 1421321, DOI 10.1090/surv/048
- Paul-Jean Cahen, Jean-Luc Chabert, Evan Houston, and Thomas G. Lucas, Skolem properties, value-functions, and divisorial ideals, J. Pure Appl. Algebra 135 (1999), no. 3, 207–223. MR 1670704, DOI 10.1016/S0022-4049(97)00159-X
- Jean-Luc Chabert, Un anneau de Prüfer, J. Algebra 107 (1987), no. 1, 1–16 (French, with English summary). MR 883864, DOI 10.1016/0021-8693(87)90068-8
- David E. Dobbs, Richard Fedder, and Marco Fontana, Abstract Riemann surfaces of integral domains and spectral spaces, Ann. Mat. Pura Appl. (4) 148 (1987), 101–115 (English, with Italian summary). MR 932760, DOI 10.1007/BF01774285
- David E. Dobbs and Marco Fontana, Kronecker function rings and abstract Riemann surfaces, J. Algebra 99 (1986), no. 1, 263–274. MR 836646, DOI 10.1016/0021-8693(86)90067-0
- Carmelo A. Finocchiaro, Marco Fontana, and K. Alan Loper, The constructible topology on spaces of valuation domains, Trans. Amer. Math. Soc. 365 (2013), no. 12, 6199–6216. MR 3105748, DOI 10.1090/S0002-9947-2013-05741-8
- Carmelo A. Finocchiaro, Marco Fontana, and Dario Spirito, A topological version of Hilbert’s Nullstellensatz, J. Algebra 461 (2016), 25–41. MR 3513063, DOI 10.1016/j.jalgebra.2016.04.020
- Carmelo A. Finocchiaro and Dario Spirito, Topology, intersections and flat modules, Proc. Amer. Math. Soc. 144 (2016), no. 10, 4125–4133. MR 3531166, DOI 10.1090/proc/13131
- Marco Fontana, Topologically defined classes of commutative rings, Ann. Mat. Pura Appl. (4) 123 (1980), 331–355 (English, with Italian summary). MR 581935, DOI 10.1007/BF01796550
- Sophie Frisch, Integer-valued polynomials on algebras, J. Algebra 373 (2013), 414–425. MR 2995034, DOI 10.1016/j.jalgebra.2012.10.003
- Robert Gilmer, Multiplicative ideal theory, Pure and Applied Mathematics, No. 12, Marcel Dekker, Inc., New York, 1972. MR 427289
- A. Grothendieck and J. A. Dieudonné, Éléments de géométrie algébrique. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 166, Springer-Verlag, Berlin, 1971 (French). MR 3075000
- K. Alan Loper, A classification of all $D$ such that $\textrm {Int}(D)$ is a Prüfer domain, Proc. Amer. Math. Soc. 126 (1998), no. 3, 657–660. MR 1459137, DOI 10.1090/S0002-9939-98-04459-1
- Donald L. McQuillan, On Prüfer domains of polynomials, J. Reine Angew. Math. 358 (1985), 162–178. MR 797681, DOI 10.1515/crll.1985.358.162
- Bruce Olberding, Affine schemes and topological closures in the Zariski-Riemann space of valuation rings, J. Pure Appl. Algebra 219 (2015), no. 5, 1720–1741. MR 3299704, DOI 10.1016/j.jpaa.2014.07.009
- Fred Richman, Generalized quotient rings, Proc. Amer. Math. Soc. 16 (1965), 794–799. MR 181653, DOI 10.1090/S0002-9939-1965-0181653-1
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 120249, DOI 10.1007/978-3-662-29244-0
Bibliographic Information
- Carmelo Antonio Finocchiaro
- Affiliation: Dipartimento di Matematica e Informatica, Università di Catania, Città Universitaria, viale Andrea Doria 6, 95125 Catania, Italy
- MR Author ID: 893347
- ORCID: 0000-0001-9345-9475
- Email: cafinocchiaro@unict.it
- K. Alan Loper
- Affiliation: Department of Mathematics, The Ohio State University, 231 West 18th Avenue, Columbus, Ohio 43210
- MR Author ID: 250009
- Email: lopera@math.ohio-state.edu
- Received by editor(s): June 19, 2023
- Published electronically: March 26, 2024
- Additional Notes: The first author was partially supported by GNSAGA, the projects PIACERI “PLGAVA-Proprietà locali e globali di anelli e di varietà algebriche” and “MTTAI - Metodi topologici in teoria degli anelli e loro ideali” of the University of Catania, and the research project PRIN “Squarefree Gröbner degenerations, special varieties and related topics”, and by Fondazione Cariverona (Research project “Reducing complexity in algebra, logic, combinatorics - REDCOM” within the framework of the programme Ricerca Scientifica di Eccellenza 2018).
- Communicated by: Jerzy Weyman
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 1809-1819
- MSC (2020): Primary 13F05, 13F20, 13F30
- DOI: https://doi.org/10.1090/proc/16740
- MathSciNet review: 4728453