A Bourgain-Brezis-Mironescu type result for the fractional relativistic seminorm
HTML articles powered by AMS MathViewer
- by Vincenzo Ambrosio and Fares Essebei;
- Proc. Amer. Math. Soc. 152 (2024), 2529-2539
- DOI: https://doi.org/10.1090/proc/16734
- Published electronically: March 20, 2024
- HTML | PDF | Request permission
Abstract:
We establish a version of the Bourgain-Brezis-Mironescu type formula on the limit as $s\rightarrow 1^-$ of the fractional relativistic seminorm.References
- Vincenzo Ambrosio, On some convergence results for fractional periodic Sobolev spaces, Opuscula Math. 40 (2020), no. 1, 5–20. MR 4075889, DOI 10.7494/opmath.2020.40.1.5
- Vincenzo Ambrosio, Nonlinear fractional Schrödinger equations in $\Bbb R^N$, Frontiers in Elliptic and Parabolic Problems, Birkhäuser/Springer, Cham, [2021] ©2021. MR 4264520, DOI 10.1007/978-3-030-60220-8
- Vincenzo Ambrosio, On the fractional relativistic Schrödinger operator, J. Differential Equations 308 (2022), 327–368. MR 4343747, DOI 10.1016/j.jde.2021.07.048
- V. Ambrosio, H. Bueno, A. H. S. Medeiros, and G. A. Pereira, On the convergence of the fractional relativistic Schrodinger operator, Bull. Braz. Math. Soc. (N.S.) 54 (2023), no. 4, Paper No. 56, 28. MR 4660716, DOI 10.1007/s00574-023-00371-7
- N. Aronszajn and K. T. Smith, Theory of Bessel potentials. I, Ann. Inst. Fourier (Grenoble) 11 (1961), 385–475 (English, with French summary). MR 143935, DOI 10.5802/aif.116
- Jean Bourgain, Haim Brezis, and Petru Mironescu, Another look at Sobolev spaces, Optimal control and partial differential equations, IOS, Amsterdam, 2001, pp. 439–455. MR 3586796
- René Carmona, Wen Chen Masters, and Barry Simon, Relativistic Schrödinger operators: asymptotic behavior of the eigenfunctions, J. Funct. Anal. 91 (1990), no. 1, 117–142. MR 1054115, DOI 10.1016/0022-1236(90)90049-Q
- Eleonora Di Nezza, Giampiero Palatucci, and Enrico Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521–573. MR 2944369, DOI 10.1016/j.bulsci.2011.12.004
- Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi, Higher transcendental functions. Vol. II, Robert E. Krieger Publishing Co., Inc., Melbourne, FL, 1981. Based on notes left by Harry Bateman; Reprint of the 1953 original. MR 698780
- Lars Hörmander, The analysis of linear partial differential operators. III, Classics in Mathematics, Springer, Berlin, 2007. Pseudo-differential operators; Reprint of the 1994 edition. MR 2304165, DOI 10.1007/978-3-540-49938-1
- Elliott H. Lieb and Robert Seiringer, The stability of matter in quantum mechanics, Cambridge University Press, Cambridge, 2010. MR 2583992
- V. Maz′ya and T. Shaposhnikova, On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal. 195 (2002), no. 2, 230–238. MR 1940355, DOI 10.1006/jfan.2002.3955
- Hoai-Minh Nguyen, Andrea Pinamonti, Marco Squassina, and Eugenio Vecchi, Some characterizations of magnetic Sobolev spaces, Complex Var. Elliptic Equ. 65 (2020), no. 7, 1104–1114. MR 4095546, DOI 10.1080/17476933.2018.1520850
- Andrea Pinamonti, Marco Squassina, and Eugenio Vecchi, Magnetic BV-functions and the Bourgain-Brezis-Mironescu formula, Adv. Calc. Var. 12 (2019), no. 3, 225–252. MR 3975602, DOI 10.1515/acv-2017-0019
- MichałRyznar, Estimates of Green function for relativistic $\alpha$-stable process, Potential Anal. 17 (2002), no. 1, 1–23. MR 1906405, DOI 10.1023/A:1015231913916
- Marco Squassina and Bruno Volzone, Bourgain-Brézis-Mironescu formula for magnetic operators, C. R. Math. Acad. Sci. Paris 354 (2016), no. 8, 825–831 (English, with English and French summaries). MR 3528339, DOI 10.1016/j.crma.2016.04.013
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, NJ, 1970. MR 290095
- Pablo Raúl Stinga and José Luis Torrea, Extension problem and Harnack’s inequality for some fractional operators, Comm. Partial Differential Equations 35 (2010), no. 11, 2092–2122. MR 2754080, DOI 10.1080/03605301003735680
- G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge; The Macmillan Company, New York, 1944. MR 10746
Bibliographic Information
- Vincenzo Ambrosio
- Affiliation: Dipartimento di Ingegneria Industriale e Scienze Matematiche, Università Politecnica delle Marche, Via Brecce Bianche, 12 60131 Ancona, Italy
- MR Author ID: 1105343
- ORCID: 0000-0003-3439-1428
- Email: v.ambrosio@staff.univpm.it
- Fares Essebei
- Affiliation: Dipartimento di Ingegneria Industriale e Scienze Matematiche, Università Politecnica delle Marche, Via Brecce Bianche, 12 60131 Ancona, Italy
- MR Author ID: 1551910
- Email: f.essebei@staff.univpm.it
- Received by editor(s): May 3, 2023
- Received by editor(s) in revised form: November 17, 2023
- Published electronically: March 20, 2024
- Communicated by: Ariel Barton
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 2529-2539
- MSC (2020): Primary 46E35, 33C10
- DOI: https://doi.org/10.1090/proc/16734
- MathSciNet review: 4741246