Improved inequalities between Dirichlet and Neumann eigenvalues of the biharmonic operator
HTML articles powered by AMS MathViewer
- by Vladimir Lotoreichik;
- Proc. Amer. Math. Soc. 152 (2024), 2571-2584
- DOI: https://doi.org/10.1090/proc/16749
- Published electronically: April 25, 2024
- HTML | PDF | Request permission
Abstract:
We prove that the $(k+d)$-th Neumann eigenvalue of the biharmonic operator on a bounded connected $d$-dimensional $(d\ge 2)$ Lipschitz domain is not larger than its $k$-th Dirichlet eigenvalue for all $k\in \mathbb {N}$. For a special class of domains with symmetries we obtain a stronger inequality. Namely, for this class of domains, we prove that the $(k+d+1)$-th Neumann eigenvalue of the biharmonic operator does not exceed its $k$-th Dirichlet eigenvalue for all $k\in \mathbb {N}$. In particular, in two dimensions, this special class consists of domains having an axis of symmetry.References
- Mark S. Ashbaugh and Rafael D. Benguria, On Rayleigh’s conjecture for the clamped plate and its generalization to three dimensions, Duke Math. J. 78 (1995), no. 1, 1–17. MR 1328749, DOI 10.1215/S0012-7094-95-07801-6
- Patricio Aviles, Symmetry theorems related to Pompeiu’s problem, Amer. J. Math. 108 (1986), no. 5, 1023–1036. MR 859768, DOI 10.2307/2374594
- Jussi Behrndt and Jonathan Rohleder, An inverse problem of Calderón type with partial data, Comm. Partial Differential Equations 37 (2012), no. 6, 1141–1159. MR 2924468, DOI 10.1080/03605302.2011.632464
- D. Buoso and P. Freitas, Extremal eigenvalues of the Dirichlet biharmonic operator on rectangles, Proc. Amer. Math. Soc. 148 (2020), no. 3, 1109–1120. MR 4055938, DOI 10.1090/proc/14792
- Davide Buoso and James B. Kennedy, The Bilaplacian with Robin boundary conditions, SIAM J. Math. Anal. 54 (2022), no. 1, 36–78. MR 4358025, DOI 10.1137/20M1363984
- L. M. Chasman, An isoperimetric inequality for fundamental tones of free plates, Comm. Math. Phys. 303 (2011), no. 2, 421–449. MR 2782621, DOI 10.1007/s00220-010-1171-z
- L. Mercredi Chasman and Jeffrey J. Langford, A sharp isoperimetric inequality for the second eigenvalue of the Robin plate, J. Spectr. Theory 12 (2022), no. 2, 617–657. MR 4487486, DOI 10.4171/jst/413
- Bruno Colbois and Luigi Provenzano, Neumann eigenvalues of the biharmonic operator on domains: geometric bounds and related results, J. Geom. Anal. 32 (2022), no. 8, Paper No. 218, 58. MR 4436631, DOI 10.1007/s12220-022-00955-7
- E. B. Davies, Spectral theory and differential operators, Cambridge Studies in Advanced Mathematics, vol. 42, Cambridge University Press, Cambridge, 1995. MR 1349825, DOI 10.1017/CBO9780511623721
- C. Denis and A. F. M. ter Elst, The Stokes Dirichlet-to-Neumann operator, J. Evol. Equ. 24 (2024), no. 2, Paper No. 22, 26. MR 4718613, DOI 10.1007/s00028-023-00930-x
- Veronica Felli and Giulio Romani, Perturbed eigenvalues of polyharmonic operators in domains with small holes, Calc. Var. Partial Differential Equations 62 (2023), no. 4, Paper No. 128, 36. MR 4568178, DOI 10.1007/s00526-023-02467-w
- Francesco Ferraresso and Luigi Provenzano, On the eigenvalues of the biharmonic operator with Neumann boundary conditions on a thin set, Bull. Lond. Math. Soc. 55 (2023), no. 3, 1154–1177. MR 4599105, DOI 10.1112/blms.12781
- N. Filonov, On an inequality for the eigenvalues of the Dirichlet and Neumann problems for the Laplace operator, Algebra i Analiz 16 (2004), no. 2, 172–176 (Russian); English transl., St. Petersburg Math. J. 16 (2005), no. 2, 413–416. MR 2068346, DOI 10.1090/S1061-0022-05-00857-5
- Rupert L. Frank and Ari Laptev, Inequalities between Dirichlet and Neumann eigenvalues on the Heisenberg group, Int. Math. Res. Not. IMRN 15 (2010), 2889–2902. MR 2673713, DOI 10.1093/imrn/rnp230
- Rupert L. Frank, Ari Laptev, and Timo Weidl, Schrödinger operators: eigenvalues and Lieb-Thirring inequalities, Cambridge Studies in Advanced Mathematics, vol. 200, Cambridge University Press, Cambridge, 2023. MR 4496335, DOI 10.1017/9781009218436
- Leonid Friedlander, Some inequalities between Dirichlet and Neumann eigenvalues, Arch. Rational Mech. Anal. 116 (1991), no. 2, 153–160. MR 1143438, DOI 10.1007/BF00375590
- P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 775683
- Tosio Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. MR 1335452, DOI 10.1007/978-3-642-66282-9
- V. Kozlov and S. Nazarov, The spectrum asymptotics for the Dirichlet problem in the case of the biharmonic operator in a domain with highly indented boundary, St. Petersburg Math. J. 22 (2011), 941–983.
- Alexandru Kristály, Fundamental tones of clamped plates in nonpositively curved spaces, Adv. Math. 367 (2020), 107113, 39. MR 4078824, DOI 10.1016/j.aim.2020.107113
- Howard A. Levine and Hans F. Weinberger, Inequalities between Dirichlet and Neumann eigenvalues, Arch. Rational Mech. Anal. 94 (1986), no. 3, 193–208. MR 846060, DOI 10.1007/BF00279862
- R. Leylekian, Sufficient conditions yielding the Rayleigh Conjecture for the clamped plate, arXiv:2302.06313, 2023.
- Vladimir Lotoreichik, An isoperimetric inequality for the perturbed Robin bi-Laplacian in a planar exterior domain, J. Differential Equations 345 (2023), 285–313. MR 4515245, DOI 10.1016/j.jde.2022.11.016
- Vladimir Lotoreichik and Jonathan Rohleder, Eigenvalue inequalities for the Laplacian with mixed boundary conditions, J. Differential Equations 263 (2017), no. 1, 491–508. MR 3631314, DOI 10.1016/j.jde.2017.02.043
- Jiří Matoušek, Using the Borsuk-Ulam theorem, Universitext, Springer-Verlag, Berlin, 2003. Lectures on topological methods in combinatorics and geometry; Written in cooperation with Anders Björner and Günter M. Ziegler. MR 1988723
- Nikolai S. Nadirashvili, Rayleigh’s conjecture on the principal frequency of the clamped plate, Arch. Rational Mech. Anal. 129 (1995), no. 1, 1–10. MR 1328469, DOI 10.1007/BF00375124
- L. E. Payne, Inequalities for eigenvalues of membranes and plates, J. Rational Mech. Anal. 4 (1955), 517–529. MR 70834, DOI 10.1512/iumj.1955.4.54016
- Lawrence E. Payne, Some comments on the past fifty years of isoperimetric inequalities, Inequalities (Birmingham, 1987) Lecture Notes in Pure and Appl. Math., vol. 129, Dekker, New York, 1991, pp. 143–161. MR 1112577
- G. Pólya, Remarks on the foregoing paper, J. Math. Physics 31 (1952), 55–57. MR 47237, DOI 10.1002/sapm195231155
- Luigi Provenzano, A note on the Neumann eigenvalues of the biharmonic operator, Math. Methods Appl. Sci. 41 (2018), no. 3, 1005–1012. MR 3762323, DOI 10.1002/mma.4063
- Luigi Provenzano, Inequalities between Dirichlet and Neumann eigenvalues of the polyharmonic operators, Proc. Amer. Math. Soc. 147 (2019), no. 11, 4813–4821. MR 4011515, DOI 10.1090/proc/14615
- John William Strutt Rayleigh Baron, The Theory of Sound, Dover Publications, New York, 1945. 2d ed. MR 16009
- Jonathan Rohleder, Inequalities between Neumann and Dirichlet eigenvalues of Schrödinger operators, J. Spectr. Theory 11 (2021), no. 3, 915–933. MR 4322026, DOI 10.4171/jst/361
- Qiaoling Wang and Changyu Xia, Universal bounds for eigenvalues of the biharmonic operator on Riemannian manifolds, J. Funct. Anal. 245 (2007), no. 1, 334–352. MR 2311628, DOI 10.1016/j.jfa.2006.11.007
Bibliographic Information
- Vladimir Lotoreichik
- Affiliation: Department of Theoretical Physics, Nuclear Physics Institute, Czech Academy of Sciences, 25068, Řež, Czech Republic
- MR Author ID: 904474
- Email: lotoreichik@ujf.cas.cz
- Received by editor(s): September 4, 2023
- Received by editor(s) in revised form: November 16, 2023, and December 4, 2023
- Published electronically: April 25, 2024
- Additional Notes: The author was supported by the grant No. 21-07129S of the Czech Science Foundation.
- Communicated by: Tanya Christiansen
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 2571-2584
- MSC (2020): Primary 35P05, 35P15; Secondary 35G05
- DOI: https://doi.org/10.1090/proc/16749
- MathSciNet review: 4741250