Two criteria for quasihomogeneity
HTML articles powered by AMS MathViewer
- by Sarasij Maitra and Vivek Mukundan;
- Proc. Amer. Math. Soc. 152 (2024), 2369-2375
- DOI: https://doi.org/10.1090/proc/16773
- Published electronically: April 12, 2024
- HTML | PDF | Request permission
Abstract:
Let $(R,\mathfrak {m}_R,\mathbb {k})$ be a one-dimensional complete local reduced $\mathbb {k}$-algebra over a field of characteristic zero. The ring $R$ is said to be quasihomogeneous if there exists a surjection $\Omega _R\twoheadrightarrow \mathfrak {m}$ where $\Omega _R$ denotes the module of differentials. We present two characterizations of quasihomogeniety of $R$ in the case when $R$ is a domain. The first one on the valuation semigroup of $R$ and the other on the trace ideal of the module $\Omega _R$.References
- Robert W. Berger, Report on the torsion of the differential module of an algebraic curve, Algebraic geometry and its applications (West Lafayette, IN, 1990) Springer, New York, 1994, pp. 285–303. MR 1272036
- Jürgen Herzog, The module of differentials, Lecture notes from Workshop on Commutative Algebra and its Relation to Combinatorics and Computer Algebra (Trieste, 1994), 1994.
- Craig Huneke, Sarasij Maitra, and Vivek Mukundan, Torsion in differentials and Berger’s conjecture, Res. Math. Sci. 8 (2021), no. 4, Paper No. 60, 15. MR 4323642, DOI 10.1007/s40687-021-00295-y
- Toshinori Kobayashi and Ryo Takahashi, Rings whose ideals are isomorphic to trace ideals, Math. Nachr. 292 (2019), no. 10, 2252–2261. MR 4019663, DOI 10.1002/mana.201800309
- Ernst Kunz, Kähler differentials, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1986. MR 864975, DOI 10.1007/978-3-663-14074-0
- Ernst Kunz and Walter Ruppert, Quasihomogene Singularitäten algebraischer Kurven, Manuscripta Math. 22 (1977), no. 1, 47–61 (German, with English summary). MR 463180, DOI 10.1007/BF01182066
- Haydee Lindo, Trace ideals and centers of endomorphism rings of modules over commutative rings, J. Algebra 482 (2017), 102–130. MR 3646286, DOI 10.1016/j.jalgebra.2016.10.026
- Sarasij Maitra, Partial trace ideals and Berger’s conjecture, J. Algebra 598 (2022), 1–23. MR 4379271, DOI 10.1016/j.jalgebra.2022.01.018
- Sarasij Maitra and Vivek Mukundan, Valuations and nonzero torsion in module of differentials, Bull. Sci. Math. 187 (2023), Paper No. 103287, 21. MR 4601799, DOI 10.1016/j.bulsci.2023.103287
- Kyoji Saito, Quasihomogene isolierte Singularitäten von Hyperflächen, Invent. Math. 14 (1971), 123–142 (German). MR 294699, DOI 10.1007/BF01405360
- Günter Scheja, Differentialmoduln lokaler analytischer Algebren, Schriftenreihe Math, Inst. Univ. Fribourg, Univ. Fribourg, Switzerland, 1970.
- Craig Huneke and Irena Swanson, Integral closure of ideals, rings, and modules, London Mathematical Society Lecture Note Series, vol. 336, Cambridge University Press, Cambridge, 2006. MR 2266432
- Rolf Waldi, Deformation von Gorenstein-Singularitäten der Kodimension $3$, Math. Ann. 242 (1979), no. 3, 201–208 (German). MR 545214, DOI 10.1007/BF01420726
- Oscar Zariski, Characterization of plane algebroid curves whose module of differentials has maximum torsion, Proc. Nat. Acad. Sci. U.S.A. 56 (1966), 781–786. MR 202716, DOI 10.1073/pnas.56.3.781
Bibliographic Information
- Sarasij Maitra
- Affiliation: Department of Mathematics, University of Utah, Salt Lake City, Utah 84112-9057
- MR Author ID: 1467561
- ORCID: 0000-0002-7764-2429
- Email: maitra@math.utah.edu
- Vivek Mukundan
- Affiliation: Department of Mathematics, Indian Institute of Technology Delhi, Hauz Khas, Delhi 110016, India
- MR Author ID: 1164605
- ORCID: 0000-0002-7202-8083
- Email: vmukunda@iitd.ac.in
- Received by editor(s): September 11, 2023
- Received by editor(s) in revised form: November 15, 2023
- Published electronically: April 12, 2024
- Communicated by: Claudia Polini
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 2369-2375
- MSC (2020): Primary 13A15; Secondary 13H05
- DOI: https://doi.org/10.1090/proc/16773
- MathSciNet review: 4741234