Corrigendum to “A Severi type theorem for surfaces in $\mathbb {P}^6$”
HTML articles powered by AMS MathViewer
- by Pietro De Poi and Giovanna Ilardi;
- Proc. Amer. Math. Soc. 152 (2024), 2715-2715
- DOI: https://doi.org/10.1090/proc/16819
- Published electronically: April 11, 2024
- HTML | PDF | Request permission
Original Article: Proc. Amer. Math. Soc. 149 (2021), 591-605.
Abstract:
In Theorem 0.1 of the paper “A Severi type theorem for surfaces in $\mathbb {P}^6$” [Proc. Amer. Math. Soc. 149 (2021), pp. 591–605], we claimed to have given a complete classification of smooth surfaces in $\mathbb {P}^6$ with one 4-secant plane through the general point of $\mathbb {P}^6$, but the classification is still incomplete.References
- Pietro De Poi and Giovanna Ilardi, A Severi type theorem for surfaces in $\Bbb {P}^6$, Proc. Amer. Math. Soc. 149 (2021), no. 2, 591–605. MR 4198068, DOI 10.1090/proc/15263
- Elvira Laura Livorni, On the existence of some surfaces, Algebraic geometry (L’Aquila, 1988) Lecture Notes in Math., vol. 1417, Springer, Berlin, 1990, pp. 155–179. MR 1040558, DOI 10.1007/BFb0083340
Bibliographic Information
- Pietro De Poi
- Affiliation: Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università degli Studi di Udine, Via delle Scienze, 206, Località Rizzi, 33100 Udine, Italy
- MR Author ID: 621166
- ORCID: 0000-0002-6741-6612
- Email: pietro.depoi@uniud.it
- Giovanna Ilardi
- Affiliation: Dipartimento di Matematica e Applicazioni “Renato Caccioppoli”, Università degli Studi di Napoli “Federico II”, Via Cinthia, 80126 Napoli, Italy
- MR Author ID: 323350
- Email: giovanna.ilardi@unina.it
- Received by editor(s): January 31, 2024
- Published electronically: April 11, 2024
- Additional Notes: The second author is the corresponding author
- Communicated by: David Futer
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 2715-2715
- MSC (2020): Primary 14M20
- DOI: https://doi.org/10.1090/proc/16819
- MathSciNet review: 4741262