Smooth solutions to the heat equation which are nowhere analytic in time
HTML articles powered by AMS MathViewer
- by Xin Yang, Chulan Zeng and Qi S. Zhang;
- Proc. Amer. Math. Soc. 152 (2024), 2821-2830
- DOI: https://doi.org/10.1090/proc/16323
- Published electronically: May 23, 2024
- HTML | PDF | Request permission
Abstract:
The existence of smooth but nowhere analytic functions is well-known (du Bois-Reymond [Math. Ann. 21 (1883), no. 1, pp. 109–117]). However, smooth solutions to the heat equation are usually analytic in the space variable. It is also well-known (Kowalevsky [Crelle 80 (1875), pp. 1–32]) that a solution to the heat equation may not be time-analytic at $t=0$ even if the initial function is real analytic. Recently, it was shown by Dong and Pan [J Math. Fluid Mech. 22 (2020), no. 4, Paper No. 53]; Dong and Zhang [J. Funct. Anal. 279 (2020), no. 4, Paper No. 108563]; Zhang [Proc. Amer. Math. Soc. 148 (2020), no. 4, pp. 1665–1670] that solutions to the heat equation in the whole space, or in the half space with zero boundary value, are analytic in time under an essentially optimal growth condition. In this paper, we show that time analyticity is not always true in domains with general boundary conditions or without suitable growth conditions. More precisely, we construct two bounded solutions to the heat equation in the half plane which are nowhere analytic in time. In addition, for any $\delta >0$, we find a solution to the heat equation on the whole plane, with exponential growth of order $2+\delta$, which is nowhere analytic in time.References
- G. G. Bilodeau, The origin and early development of nonanalytic infinitely differentiable functions, Arch. Hist. Exact Sci. 27 (1982), no. 2, 115–135. MR 677684, DOI 10.1007/BF00348345
- Emile Borel, Sur quelques points de la théorie des fonctions, Ann. Sci. École Norm. Sup. (3) 12 (1895), 9–55 (French). MR 1508908, DOI 10.24033/asens.406
- Georg Cantor, Ueber ein neues und allgemeines Condensationsprincip der Singularitäten von Functionen, Math. Ann. 19 (1882), no. 4, 588–594 (German). MR 1510146, DOI 10.1007/BF01446674
- A. Cauchy, Mémoire sur l’emploi du calcul des limites dans l’intégration des équations aux dérivées partielles, Comptes Rendus XV (1842), 44–59
- C. Cellerier, Note sur les principes fondamentaux de l’analyse, Bull. Sci. Math. 14 (1890), 142–160
- Hongjie Dong and Xinghong Pan, Time analyticity for inhomogeneous parabolic equations and the Navier-Stokes equations in the half space, J. Math. Fluid Mech. 22 (2020), no. 4, Paper No. 53, 20. MR 4145847, DOI 10.1007/s00021-020-00515-5
- Hongjie Dong, Chulan Zeng, and Qi S. Zhang, Time analyticity for nonlocal parabolic equations, SIAM J. Math. Anal. 55 (2023), no. 3, 1883–1915. MR 4598823, DOI 10.1137/22M1490740
- Hongjie Dong and Qi S. Zhang, Time analyticity for the heat equation and Navier-Stokes equations, J. Funct. Anal. 279 (2020), no. 4, 108563, 15. MR 4095801, DOI 10.1016/j.jfa.2020.108563
- Paul du Bois-Reymond, Ueber den Gültigkeitsbereich der Taylor’schen Reihenentwickelung, Math. Ann. 21 (1883), no. 1, 109–117 (German). MR 1510189, DOI 10.1007/BF01442615
- Luis Escauriaza, Santiago Montaner, and Can Zhang, Analyticity of solutions to parabolic evolutions and applications, SIAM J. Math. Anal. 49 (2017), no. 5, 4064–4092. MR 3713902, DOI 10.1137/15M1039705
- Yoshikazu Giga, Time and spatial analyticity of solutions of the Navier-Stokes equations, Comm. Partial Differential Equations 8 (1983), no. 8, 929–948. MR 699168, DOI 10.1080/03605308308820290
- J. Hadamard, Essai sur l’etude des fonctions donnees par leur developpement de taylor, J. Math. Pures Appl. 8 (1924), no. 4, 101–186
- Herrmann Hankel, Untersuchungen über die unendlich oft oscillirenden und unstetigen Functionen, Math. Ann. 20 (1882), no. 1, 63–112 (German). MR 1510154, DOI 10.1007/BF01443329
- Charles Kahane, On the spatial analyticity of solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal. 33 (1969), 386–405. MR 245989, DOI 10.1007/BF00247697
- Gen Komatsu, Global analyticity up to the boundary of solutions of the Navier-Stokes equation, Comm. Pure Appl. Math. 33 (1980), no. 4, 545–566. MR 575737, DOI 10.1002/cpa.3160330405
- Sophie von Kowalevsky, Zur Theorie der partiellen Differentialgleichung, J. Reine Angew. Math. 80 (1875), 1–32 (German). MR 1579652, DOI 10.1515/crll.1875.80.1
- Camille Laurent and Lionel Rosier, Exact controllability of semilinear heat equations in spaces of analytic functions, Ann. Inst. H. Poincaré C Anal. Non Linéaire 37 (2020), no. 4, 1047–1073. MR 4104834, DOI 10.1016/j.anihpc.2020.03.001
- Matthias Lerch, Ueber die Nichtdifferentiirbarkeit gewisser Functionen, J. Reine Angew. Math. 103 (1888), 126–138 (German). MR 1580160, DOI 10.1515/crll.1888.103.126
- Kyûya Masuda, On the analyticity and the unique continuation theorem for solutions of the Navier-Stokes equation, Proc. Japan Acad. 43 (1967), 827–832. MR 247304
- Dietrich Morgenstern, Unendlich oft differenzierbare nicht-analytische Funktionen, Math. Nachr. 12 (1954), 74 (German). MR 64830, DOI 10.1002/mana.19540120106
- A. Tychonoff, Théorèmes d’unicité pour l’équation de la chaleur, Mat. Sb. 42 (1935), no. 2, 199–216
- PawełWalczak, A proof of some theorem on the $C^{\infty }$-functions of one variable which are not analytic, Demonstratio Math. 4 (1972), 209–213. MR 335724
- D. V. Widder, Analytic solutions of the heat equation, Duke Math. J. 29 (1962), 497–503. MR 157127, DOI 10.1215/S0012-7094-62-02950-2
- Chulan Zeng, Time analyticity of the biharmonic heat equation, the heat equation with potentials and some nonlinear heat equations, Commun. Pure Appl. Anal. 21 (2022), no. 3, 749–783. MR 4389599, DOI 10.3934/cpaa.2021197
- Q. S. Zhang, A formula for backward and control problems of the heat equation, arXiv:2005.08375, 2020.
- Qi S. Zhang, A note on time analyticity for ancient solutions of the heat equation, Proc. Amer. Math. Soc. 148 (2020), no. 4, 1665–1670. MR 4069203, DOI 10.1090/proc/14830
Bibliographic Information
- Xin Yang
- Affiliation: School of Mathematics, Southeast University, Nanjing, Jiangsu 211189, People’s Republic of China
- ORCID: 0000-0001-9278-2553
- Email: xinyang@seu.edu.cn
- Chulan Zeng
- Affiliation: Department of Mathematics, University of California, Riverside, California 92521
- ORCID: 0000-0001-7162-4513
- Email: czeng011@ucr.edu
- Qi S. Zhang
- Affiliation: Department of Mathematics, University of California, Riverside, California 92521
- MR Author ID: 359866
- Email: qizhang@math.ucr.edu
- Received by editor(s): September 27, 2021
- Received by editor(s) in revised form: September 18, 2022
- Published electronically: May 23, 2024
- Additional Notes: The third author was supported by Simons foundation (grant 710364).
- Communicated by: Ryan Hynd
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 2821-2830
- MSC (2020): Primary 35A20, 35C05, 35K05, 35K20
- DOI: https://doi.org/10.1090/proc/16323
- MathSciNet review: 4753271