Diameter estimate for planar $L_p$ dual Minkowski problem
HTML articles powered by AMS MathViewer
- by Minhyun Kim and Taehun Lee;
- Proc. Amer. Math. Soc. 152 (2024), 3035-3049
- DOI: https://doi.org/10.1090/proc/16464
- Published electronically: May 22, 2024
- HTML | PDF | Request permission
Abstract:
In this paper, given a prescribed measure on $\mathbb {S}^1$ whose density is bounded and positive, we establish a uniform diameter estimate for solutions to the planar $L_p$ dual Minkowski problem when $0<p<1$ and $q\ge 2$. We also prove the uniqueness and positivity of solutions to the $L_p$ Minkowski problem when the density of the measure is sufficiently close to a constant in $C^\alpha$.References
- Ben Andrews, Gauss curvature flow: the fate of the rolling stones, Invent. Math. 138 (1999), no. 1, 151–161. MR 1714339, DOI 10.1007/s002220050344
- Gabriele Bianchi, Károly J. Böröczky, and Andrea Colesanti, Smoothness in the $L_p$ Minkowski problem for $p<1$, J. Geom. Anal. 30 (2020), no. 1, 680–705. MR 4058533, DOI 10.1007/s12220-019-00161-y
- Károly J. Böröczky and Ferenc Fodor, The $L_p$ dual Minkowski problem for $p>1$ and $q>0$, J. Differential Equations 266 (2019), no. 12, 7980–8033. MR 3944247, DOI 10.1016/j.jde.2018.12.020
- Károly J. Böröczky, Erwin Lutwak, Deane Yang, and Gaoyong Zhang, The log-Brunn-Minkowski inequality, Adv. Math. 231 (2012), no. 3-4, 1974–1997. MR 2964630, DOI 10.1016/j.aim.2012.07.015
- Károly J. Böröczky and Hai T. Trinh, The planar $L_p$-Minkowski problem for $0<p<1$, Adv. in Appl. Math. 87 (2017), 58–81. MR 3629263, DOI 10.1016/j.aam.2016.12.007
- Simon Brendle, Kyeongsu Choi, and Panagiota Daskalopoulos, Asymptotic behavior of flows by powers of the Gaussian curvature, Acta Math. 219 (2017), no. 1, 1–16. MR 3765656, DOI 10.4310/ACTA.2017.v219.n1.a1
- Luis A. Caffarelli, Interior $W^{2,p}$ estimates for solutions of the Monge-Ampère equation, Ann. of Math. (2) 131 (1990), no. 1, 135–150. MR 1038360, DOI 10.2307/1971510
- Chuanqiang Chen, Yong Huang, and Yiming Zhao, Smooth solutions to the $L_p$ dual Minkowski problem, Math. Ann. 373 (2019), no. 3-4, 953–976. MR 3953117, DOI 10.1007/s00208-018-1727-3
- Haodi Chen, Shibing Chen, and Qi-Rui Li, Variations of a class of Monge-Ampère-type functionals and their applications, Anal. PDE 14 (2021), no. 3, 689–716. MR 4259871, DOI 10.2140/apde.2021.14.689
- Haodi Chen and Qi-Rui Li, The $L_ p$ dual Minkowski problem and related parabolic flows, J. Funct. Anal. 281 (2021), no. 8, Paper No. 109139, 65. MR 4271790, DOI 10.1016/j.jfa.2021.109139
- Shibing Chen, Yibin Feng, and Weiru Liu, Uniqueness of solutions to the logarithmic Minkowski problem in $\Bbb R^3$. part A, Adv. Math. 411 (2022), no. part A, Paper No. 108782, 18. MR 4512403, DOI 10.1016/j.aim.2022.108782
- Shibing Chen, Yong Huang, Qi-Rui Li, and Jiakun Liu, The $L_ p$-Brunn-Minkowski inequality for $p<1$, Adv. Math. 368 (2020), 107166, 21. MR 4088419, DOI 10.1016/j.aim.2020.107166
- Shibing Chen and Qi-Rui Li, On the planar dual Minkowski problem, Adv. Math. 333 (2018), 87–117. MR 3818073, DOI 10.1016/j.aim.2018.05.010
- Shibing Chen, Qi-rui Li, and Guangxian Zhu, On the $L_p$ Monge-Ampère equation, J. Differential Equations 263 (2017), no. 8, 4997–5011. MR 3680945, DOI 10.1016/j.jde.2017.06.007
- Kai-Seng Chou and Xu-Jia Wang, The $L_p$-Minkowski problem and the Minkowski problem in centroaffine geometry, Adv. Math. 205 (2006), no. 1, 33–83. MR 2254308, DOI 10.1016/j.aim.2005.07.004
- Shi-Zhong Du, On the planar $L_ p$-Minkowski problem, J. Differential Equations 287 (2021), 37–77. MR 4238072, DOI 10.1016/j.jde.2021.03.035
- William J. Firey, Shapes of worn stones, Mathematika 21 (1974), 1–11. MR 362045, DOI 10.1112/S0025579300005714
- Michael E. Gage, Evolving plane curves by curvature in relative geometries, Duke Math. J. 72 (1993), no. 2, 441–466. MR 1248680, DOI 10.1215/S0012-7094-93-07216-X
- Fangxia Lu and Zhaonian Pu, The $L_p$ dual Minkowski problem about $0 < p < 1$ and $q > 0$, Open Math. 19 (2021), no. 1, 1648–1663. MR 4382715, DOI 10.1515/math-2021-0118
- Yong Huang, Erwin Lutwak, Deane Yang, and Gaoyong Zhang, Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems, Acta Math. 216 (2016), no. 2, 325–388. MR 3573332, DOI 10.1007/s11511-016-0140-6
- Yong Huang and Yiming Zhao, On the $L_p$ dual Minkowski problem, Adv. Math. 332 (2018), 57–84. MR 3810248, DOI 10.1016/j.aim.2018.05.002
- Daniel Hug, Erwin Lutwak, Deane Yang, and Gaoyong Zhang, On the $L_p$ Minkowski problem for polytopes, Discrete Comput. Geom. 33 (2005), no. 4, 699–715. MR 2132298, DOI 10.1007/s00454-004-1149-8
- Huaiyu Jian, Jian Lu, and Xu-Jia Wang, Nonuniqueness of solutions to the $L_p$-Minkowski problem, Adv. Math. 281 (2015), 845–856. MR 3366854, DOI 10.1016/j.aim.2015.05.010
- M. A. Khuri, F. C. Marques, and R. M. Schoen, A compactness theorem for the Yamabe problem, J. Differential Geom. 81 (2009), no. 1, 143–196. MR 2477893, DOI 10.4310/jdg/1228400630
- Qi-Rui Li, Jiakun Liu, and Jian Lu, Nonuniqueness of solutions to the $L_p$ dual Minkowski problem, Int. Math. Res. Not. IMRN 12 (2022), 9114–9150. MR 4436203, DOI 10.1093/imrn/rnab013
- Erwin Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom. 38 (1993), no. 1, 131–150. MR 1231704
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, $L_p$ dual curvature measures, Adv. Math. 329 (2018), 85–132. MR 3783409, DOI 10.1016/j.aim.2018.02.011
- Hermann Minkowski, Volumen und Oberfläche, Math. Ann. 57 (1903), no. 4, 447–495 (German). MR 1511220, DOI 10.1007/BF01445180
- Hiroki Yagisita, Non-uniqueness of self-similar shrinking curves for an anisotropic curvature flow, Calc. Var. Partial Differential Equations 26 (2006), no. 1, 49–55. MR 2217482, DOI 10.1007/s00526-005-0357-2
Bibliographic Information
- Minhyun Kim
- Affiliation: Department of Mathematics & Research Institute for Natural Sciences, Hanyang University, 04763 Seoul, Republic of Korea
- MR Author ID: 1320482
- ORCID: 0000-0003-3679-1775
- Email: minhyun@hanyang.ac.kr
- Taehun Lee
- Affiliation: School of Mathematics, Korea Institute for Advanced Study, Seoul 02455, Korea
- MR Author ID: 1412769
- ORCID: 0000-0003-0113-4281
- Email: taehun@kias.re.kr
- Received by editor(s): August 18, 2022
- Received by editor(s) in revised form: February 28, 2023
- Published electronically: May 22, 2024
- Additional Notes: The first author was supported by the German Research Foundation (GRK 2235 - 282638148). The second author was supported by a KIAS Individual Grant (MG079501) at Korea Institute for Advanced Study.
The second author is the corresponding author. - Communicated by: Gaoyang Zhang
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 3035-3049
- MSC (2020): Primary 52A10, 52A39, 53A04
- DOI: https://doi.org/10.1090/proc/16464
- MathSciNet review: 4753286