Generic symmetry defect set of an algebraic curve
HTML articles powered by AMS MathViewer
- by L. R. G. Dias, M. Farnik and Z. Jelonek;
- Proc. Amer. Math. Soc. 152 (2024), 2739-2749
- DOI: https://doi.org/10.1090/proc/16741
- Published electronically: May 7, 2024
- HTML | PDF | Request permission
Abstract:
Let $X \subset \mathbb {C}^{2n}$ be an $n$-dimensional algebraic variety. We define the algebraic version of the generic symmetry defect set (Wigner caustic) of $X$. Moreover, we compute its singularities as well as degree, genus and Euler characteristic for $X_d$ being a generic (smooth and transversal to the line at infinity) curve of degree $d$ in $\mathbb {C}^2$.References
- Yasuo Akizuki, Theorems of Bertini on linear systems, J. Math. Soc. Japan 3 (1951), 170–180. MR 44160, DOI 10.2969/jmsj/00310170
- M. V. Berry, Semi-classical mechanics in phase space: a study of Wigner’s function, Philos. Trans. Roy. Soc. London Ser. A 287 (1977), no. 1343, 237–271. MR 489464, DOI 10.1098/rsta.1977.0145
- J. W. Bruce, P. J. Giblin, and C. G. Gibson, Symmetry sets, Proc. Roy. Soc. Edinburgh Sect. A 101 (1985), no. 1-2, 163–186. MR 824218, DOI 10.1017/S0308210500026263
- James Damon, Smoothness and geometry of boundaries associated to skeletal structures. I. Sufficient conditions for smoothness, Ann. Inst. Fourier (Grenoble) 53 (2003), no. 6, 1941–1985 (English, with English and French summaries). MR 2038785, DOI 10.5802/aif.1997
- J. Damon, Determining the geometry of boundaries of objects from medial data, Int. J. Comput. Vis. 63 (2005), no. 1, 45–64.
- Wojciech Domitrz and Pedro de M. Rios, Singularities of equidistants and global centre symmetry sets of Lagrangian submanifolds, Geom. Dedicata 169 (2014), 361–382. MR 3175254, DOI 10.1007/s10711-013-9861-2
- M. Farnik, Z. Jelonek, and M. A. S. Ruas, Whitney theorem for complex polynomial mappings, Math. Z. 295 (2020), no. 3-4, 1039–1065. MR 4125680, DOI 10.1007/s00209-019-02370-1
- Peter Giblin and Paul Holtom, The centre symmetry set, Geometry and topology of caustics—CAUSTICS ’98 (Warsaw), Banach Center Publ., vol. 50, Polish Acad. Sci. Inst. Math., Warsaw, 1999, pp. 91–105. MR 1739657
- P. J. Giblin and S. Janeczko, Geometry of curves and surfaces through the contact map, Topology Appl. 159 (2012), no. 2, 466–475. MR 2868906, DOI 10.1016/j.topol.2011.09.021
- S. Janeczko, Bifurcations of the center of symmetry, Geom. Dedicata 60 (1996), no. 1, 9–16. MR 1376477, DOI 10.1007/BF00150864
- S. Janeczko, Z. Jelonek, and M. A. S. Ruas, Symmetry defect of algebraic varieties, Asian J. Math. 18 (2014), no. 3, 525–544. MR 3257839, DOI 10.4310/AJM.2014.v18.n3.a8
- Zbigniew Jelonek, On semi-equivalence of generically-finite polynomial mappings, Math. Z. 283 (2016), no. 1-2, 133–142. MR 3489061, DOI 10.1007/s00209-015-1591-8
- John N. Mather, Generic projections, Ann. of Math. (2) 98 (1973), 226–245. MR 362393, DOI 10.2307/1970783
- John Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1968. MR 239612
Bibliographic Information
- L. R. G. Dias
- Affiliation: Faculdade de Matemática, Universidade Federal de Uberlândia, Av. João Naves de Ávila 2121, 1F-153 - CEP: 38408-100 Uberlândia, Brazil
- MR Author ID: 983869
- ORCID: 0000-0003-1054-870X
- Email: lrgdias@ufu.br
- M. Farnik
- Affiliation: Jagiellonian University, Faculty of Mathematics and Computer Science, Łojasiewicza 6, 30-348 Kraków, Poland
- MR Author ID: 902418
- ORCID: 0000-0002-1335-6319
- Email: michal.farnik@gmail.com
- Z. Jelonek
- Affiliation: Instytut Matematyczny, Polska Akademia Nauk, Śniadeckich 8, 00-956 Warszawa, Poland
- MR Author ID: 241045
- ORCID: 0000-0002-1065-8688
- Email: michal.farnik@gmail.com
- Received by editor(s): March 18, 2023
- Received by editor(s) in revised form: November 19, 2023
- Published electronically: May 7, 2024
- Additional Notes: All authors were partially supported by the grant of Narodowe Centrum Nauki number 2019/33/B/ST1/00755.
- Communicated by: Jerzy Weyman
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 2739-2749
- MSC (2020): Primary 14D06, 14Q20
- DOI: https://doi.org/10.1090/proc/16741
- MathSciNet review: 4753264