Some applications of a lemma by Hanes and Huneke
HTML articles powered by AMS MathViewer
- by Cleto B. Miranda-Neto;
- Proc. Amer. Math. Soc. 152 (2024), 2751-2762
- DOI: https://doi.org/10.1090/proc/16746
- Published electronically: May 7, 2024
- HTML | PDF | Request permission
Abstract:
Our main goal in this note is to use a version of a lemma by Hanes and Huneke to provide characterizations of when certain one-dimensional reduced local rings are regular. This is of interest in view of the long-standing Berger’s Conjecture (the ring is predicted to be regular if its universally finite differential module is torsion-free), which in fact we show to hold under suitable additional conditions, mostly toward the G-regular case of the conjecture. Furthermore, applying the same lemma to a Cohen-Macaulay local ring which is locally Gorenstein on the punctured spectrum but of arbitrary dimension, we notice a numerical characterization of when an ideal is strongly non-obstructed and of when a given semidualizing module is free.References
- Tokuji Araya and Kei-ichiro Iima, Remarks on torsionfreeness and its applications, Comm. Algebra 46 (2018), no. 1, 191–200. MR 3764855, DOI 10.1080/00927872.2017.1324865
- Maurice Auslander and Mark Bridger, Stable module theory, Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, Providence, RI, 1969. MR 269685
- Robert Berger, Differentialmoduln eindimensionaler lokaler Ringe, Math. Z. 81 (1963), 326–354 (German). MR 152546, DOI 10.1007/BF01111579
- Robert W. Berger, Report on the torsion of the differential module of an algebraic curve, Algebraic geometry and its applications (West Lafayette, IN, 1990) Springer, New York, 1994, pp. 285–303. MR 1272036
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- R.-O. Buchweitz, Contributions à la théorie des singularités: Déformations de Diagrammes, Déploiements et Singularités très rigides, Liaison algébrique, Ph.D. thesis, University of Paris VII, 1981.
- Hans-Bjørn Foxby, Gorenstein modules and related modules, Math. Scand. 31 (1972), 267–284 (1973). MR 327752, DOI 10.7146/math.scand.a-11434
- Shiro Goto and Ryo Takahashi, On the Auslander-Reiten conjecture for Cohen-Macaulay local rings, Proc. Amer. Math. Soc. 145 (2017), no. 8, 3289–3296. MR 3652783, DOI 10.1090/proc/13487
- Douglas Hanes and Craig Huneke, Some criteria for the Gorenstein property, J. Pure Appl. Algebra 201 (2005), no. 1-3, 4–16. MR 2158743, DOI 10.1016/j.jpaa.2004.12.038
- Jürgen Herzog, Ein Cohen-Macaulay-Kriterium mit Anwendungen auf den Konormalenmodul und den Differentialmodul, Math. Z. 163 (1978), no. 2, 149–162 (German). MR 512469, DOI 10.1007/BF01214062
- Jürgen Herzog, Deformationen von Cohen-Macaulay Algebren, J. Reine Angew. Math. 318 (1980), 83–105 (German). MR 579384, DOI 10.1515/crll.1980.318.83
- Craig Huneke, Srikanth B. Iyengar, and Roger Wiegand, Rigid ideals in Gorenstein rings of dimension one, Acta Math. Vietnam. 44 (2019), no. 1, 31–49. MR 3935288, DOI 10.1007/s40306-018-00315-0
- Craig Huneke and Graham J. Leuschke, Two theorems about maximal Cohen-Macaulay modules, Math. Ann. 324 (2002), no. 2, 391–404. MR 1933863, DOI 10.1007/s00208-002-0343-3
- Craig Huneke, Sarasij Maitra, and Vivek Mukundan, Torsion in differentials and Berger’s conjecture, Res. Math. Sci. 8 (2021), no. 4, Paper No. 60, 15. MR 4323642, DOI 10.1007/s40687-021-00295-y
- Craig Huneke and Irena Swanson, Integral closure of ideals, rings, and modules, London Mathematical Society Lecture Note Series, vol. 336, Cambridge University Press, Cambridge, 2006. MR 2266432
- C. Huneke and B. Ulrich, Powers of licci ideals, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 339–346. MR 1015526, DOI 10.1007/978-1-4612-3660-3_{1}7
- Mark R. Johnson, Linkage and sums of ideals, Trans. Amer. Math. Soc. 350 (1998), no. 5, 1913–1930. MR 1432202, DOI 10.1090/S0002-9947-98-01976-X
- David A. Jorgensen, On tensor products of rings and extension conjectures, J. Commut. Algebra 1 (2009), no. 4, 635–646. MR 2575835, DOI 10.1216/JCA-2009-1-4-635
- Ernst Kunz, Kähler differentials, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1986. MR 864975, DOI 10.1007/978-3-663-14074-0
- Sarasij Maitra, Partial trace ideals and Berger’s conjecture, J. Algebra 598 (2022), 1–23. MR 4379271, DOI 10.1016/j.jalgebra.2022.01.018
- Sarasij Maitra and Vivek Mukundan, Valuations and nonzero torsion in module of differentials, Bull. Sci. Math. 187 (2023), Paper No. 103287, 21. MR 4601799, DOI 10.1016/j.bulsci.2023.103287
- Cleto B. Miranda-Neto, On one-dimensional local rings and Berger’s conjecture, Proc. Edinb. Math. Soc. (2) 66 (2023), no. 2, 437–452. MR 4618081, DOI 10.1017/S0013091523000214
- Maria Evelina Rossi and Giuseppe Valla, Hilbert functions of filtered modules, Lecture Notes of the Unione Matematica Italiana, vol. 9, Springer-Verlag, Berlin; UMI, Bologna, 2010. MR 2723038, DOI 10.1007/978-3-642-14240-6
- Sean Sather-Wagstaff, Semidualizing modules and the divisor class group, Illinois J. Math. 51 (2007), no. 1, 255–285. MR 2346197
- Günter Scheja and Uwe Storch, Differentielle Eigenschaften der Lokalisierungen analytischer Algebren, Math. Ann. 197 (1972), 137–170 (German). MR 306172, DOI 10.1007/BF01419591
- Ryo Takahashi, On $G$-regular local rings, Comm. Algebra 36 (2008), no. 12, 4472–4491. MR 2473342, DOI 10.1080/00927870802179602
- Bernd Ulrich, Gorenstein rings and modules with high numbers of generators, Math. Z. 188 (1984), no. 1, 23–32. MR 767359, DOI 10.1007/BF01163869
- Wolmer V. Vasconcelos, Reflexive modules over Gorenstein rings, Proc. Amer. Math. Soc. 19 (1968), 1349–1355. MR 237480, DOI 10.1090/S0002-9939-1968-0237480-2
- Wolmer Vasconcelos, Integral closure, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005. Rees algebras, multiplicities, algorithms. MR 2153889
- Oana Veliche, Construction of modules with finite homological dimensions, J. Algebra 250 (2002), no. 2, 427–449. MR 1899298, DOI 10.1006/jabr.2001.9100
- Majid Rahro Zargar, Olgur Celikbas, Mohsen Gheibi, and Arash Sadeghi, Homological dimensions of rigid modules, Kyoto J. Math. 58 (2018), no. 3, 639–669. MR 3843394, DOI 10.1215/21562261-2017-0033
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 120249, DOI 10.1007/978-3-662-29244-0
Bibliographic Information
- Cleto B. Miranda-Neto
- Affiliation: Departamento de Matemática, Universidade Federal da Paraíba - 58051-900, João Pessoa, PB, Brazil
- MR Author ID: 939006
- ORCID: 0000-0002-7483-3334
- Email: cleto@mat.ufpb.br
- Received by editor(s): February 1, 2023
- Received by editor(s) in revised form: November 28, 2023
- Published electronically: May 7, 2024
- Additional Notes: The author was partially supported by the CNPq-Brazil grants 301029/2019-9 and 406377/2021-9.
- Communicated by: Jerzy Weyman
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 2751-2762
- MSC (2020): Primary 13N05, 13H05, 13C13; Secondary 13C10, 13C14, 13H10
- DOI: https://doi.org/10.1090/proc/16746
- MathSciNet review: 4753265