Polynomial bounds in Koldobsky’s discrete slicing problem
HTML articles powered by AMS MathViewer
- by Ansgar Freyer and Martin Henk;
- Proc. Amer. Math. Soc. 152 (2024), 3063-3074
- DOI: https://doi.org/10.1090/proc/16753
- Published electronically: May 7, 2024
- HTML | PDF
Abstract:
In 2013, Koldobsky posed the problem to find a constant $d_n$, depending only on the dimension $n$, such that for any origin-symmetric convex body $K\subset \mathbb {R}^n$ there exists an $(n-1)$-dimensional linear subspace $H\subset \mathbb {R}^n$ with \[ |K\cap \mathbb {Z}^n| \leq d_n\,|K\cap H\cap \mathbb {Z}^n|\,vol(K)^{\frac 1n}. \] In this article we show that $d_n$ is bounded from above by $c\,n^2\,\omega (n)/\log (n)$, where $c$ is an absolute constant and $\omega (n)$ is the flatness constant. Due to the recent best known upper bound on $\omega (n)$ we get a ${c\,n^3\log (n)^2}$ bound on $d_n$. This improves on former bounds which were exponential in the dimension.References
- Matthew Alexander, Martin Henk, and Artem Zvavitch, A discrete version of Koldobsky’s slicing inequality, Israel J. Math. 222 (2017), no. 1, 261–278. MR 3736506, DOI 10.1007/s11856-017-1589-5
- Shiri Artstein-Avidan, Apostolos Giannopoulos, and Vitali D. Milman, Asymptotic geometric analysis. Part I, Mathematical Surveys and Monographs, vol. 202, American Mathematical Society, Providence, RI, 2015. MR 3331351, DOI 10.1090/surv/202
- Wojciech Banaszczyk, Alexander E. Litvak, Alain Pajor, and Stanislaw J. Szarek, The flatness theorem for nonsymmetric convex bodies via the local theory of Banach spaces, Math. Oper. Res. 24 (1999), no. 3, 728–750. MR 1854250, DOI 10.1287/moor.24.3.728
- J. Bourgain, On high-dimensional maximal functions associated to convex bodies, Amer. J. Math. 108 (1986), no. 6, 1467–1476. MR 868898, DOI 10.2307/2374532
- J. Bourgain, Geometry of Banach spaces and harmonic analysis, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 871–878. MR 934289
- J. Bourgain and V. D. Milman, New volume ratio properties for convex symmetric bodies in $\textbf {R}^n$, Invent. Math. 88 (1987), no. 2, 319–340. MR 880954, DOI 10.1007/BF01388911
- Silouanos Brazitikos, Apostolos Giannopoulos, Petros Valettas, and Beatrice-Helen Vritsiou, Geometry of isotropic convex bodies, Mathematical Surveys and Monographs, vol. 196, American Mathematical Society, Providence, RI, 2014. MR 3185453, DOI 10.1090/surv/196
- Yuansi Chen, An almost constant lower bound of the isoperimetric coefficient in the KLS conjecture, Geom. Funct. Anal. 31 (2021), no. 1, 34–61. MR 4244847, DOI 10.1007/s00039-021-00558-4
- Daniel Nicolas Dadush, Integer programming, lattice algorithms, and deterministic volume estimation, ProQuest LLC, Ann Arbor, MI, 2012. Thesis (Ph.D.)–Georgia Institute of Technology. MR 3103593
- M. Fradelizi, Sections of convex bodies through their centroid, Arch. Math. (Basel) 69 (1997), no. 6, 515–522. MR 1480519, DOI 10.1007/s000130050154
- Matthieu Fradelizi, Mathieu Meyer, and Artem Zvavitch, Volume product, Harmonic analysis and convexity, Adv. Anal. Geom., vol. 9, De Gruyter, Berlin, [2023] ©2023, pp. 163–222. MR 4654479
- Ansgar Freyer and Martin Henk, Bounds on the lattice point enumerator via slices and projections, Discrete Comput. Geom. 67 (2022), no. 3, 895–918. MR 4393084, DOI 10.1007/s00454-021-00310-7
- Ansgar Freyer and Eduardo Lucas, Interpolating between volume and lattice point enumerator with successive minima, Monatsh. Math. 198 (2022), no. 4, 717–740. MR 4452173, DOI 10.1007/s00605-022-01713-1
- Richard J. Gardner, Geometric tomography, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 58, Cambridge University Press, New York, 2006. MR 2251886, DOI 10.1017/CBO9781107341029
- Apostolos Giannopoulos, Alexander Koldobsky, and Artem Zvavitch, Inequalities for sections and projections of convex bodies, Harmonic analysis and convexity, Adv. Anal. Geom., vol. 9, De Gruyter, Berlin, [2023] ©2023, pp. 223–256. MR 4654480
- Peter M. Gruber, Convex and discrete geometry, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 336, Springer, Berlin, 2007. MR 2335496
- P. M. Gruber and C. G. Lekkerkerker, Geometry of numbers, 2nd ed., North-Holland Mathematical Library, vol. 37, North-Holland Publishing Co., Amsterdam, 1987. MR 893813
- B. Grünbaum, Partitions of mass-distributions and of convex bodies by hyperplanes, Pacific J. Math. 10 (1960), 1257–1261. MR 124818
- Martin Henk, Matthias Schymura, and Fei Xue, Packing minima and lattice points in convex bodies, Mosc. J. Comb. Number Theory 10 (2021), no. 1, 25–48. MR 4201992, DOI 10.2140/moscow.2021.10.25
- A. Ya. Hinčin, A quantitative formulation of the approximation theory of Kronecker, Izv. Akad. Nauk SSSR Ser. Mat. 12 (1948), 113–122 (Russian). MR 24925
- Bo’az Klartag, Logarithmic bounds for isoperimetry and slices of convex sets, Ars Inven. Anal. (2023), Paper No. 4, 17. MR 4603941
- Bo’az Klartag and Joseph Lehec, Bourgain’s slicing problem and KLS isoperimetry up to polylog, Geom. Funct. Anal. 32 (2022), no. 5, 1134–1159. MR 4498841, DOI 10.1007/s00039-022-00612-9
- Bo’az Klartag and Galyna V. Livshyts, The lower bound for Koldobsky’s slicing inequality via random rounding, Geometric aspects of functional analysis. Vol. II, Lecture Notes in Math., vol. 2266, Springer, Cham, [2020] ©2020, pp. 43–63. MR 4175757, DOI 10.1007/978-3-030-46762-3_{2}
- Alexander Koldobsky, A $\sqrt {n}$ estimate for measures of hyperplane sections of convex bodies, Adv. Math. 254 (2014), 33–40. MR 3161089, DOI 10.1016/j.aim.2013.12.029
- Alexander Koldobsky, Estimates for measures of sections of convex bodies, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 2116, Springer, Cham, 2014, pp. 261–271. MR 3364691, DOI 10.1007/978-3-319-09477-9_{1}7
- Alexander Koldobsky, Slicing inequalities for measures of convex bodies, Adv. Math. 283 (2015), 473–488. MR 3383809, DOI 10.1016/j.aim.2015.07.019
- Greg Kuperberg, From the Mahler conjecture to Gauss linking integrals, Geom. Funct. Anal. 18 (2008), no. 3, 870–892. MR 2438998, DOI 10.1007/s00039-008-0669-4
- Lukas Mayrhofer, Jamico Schade, and Stefan Weltge, Lattice-free simplices with lattice width $2d - o(d)$, Integer programming and combinatorial optimization, Lecture Notes in Comput. Sci., vol. 13265, Springer, Cham, [2022] ©2022, pp. 375–386. MR 4485531, DOI 10.1007/978-3-031-06901-7_{2}8
- V. D. Milman and A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed $n$-dimensional space, Geometric aspects of functional analysis (1987–88), Lecture Notes in Math., vol. 1376, Springer, Berlin, 1989, pp. 64–104. MR 1008717, DOI 10.1007/BFb0090049
- Stanley Rabinowitz, A theorem about collinear lattice points, Utilitas Math. 36 (1989), 93–95. MR 1030772
- O. Regev, A note on Koldobsky’s lattice slicing inequality, arXiv:1608.04945, 2016.
- V. Reis and T. Rothvoss, The subspace flatness conjecture and faster integer programming, arXiv:2303.14605, 2023.
- C. A. Rogers and G. C. Shephard, Convex bodies associated with a given convex body, J. London Math. Soc. 33 (1958), 270–281. MR 101508, DOI 10.1112/jlms/s1-33.3.270
- Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Second expanded edition, Encyclopedia of Mathematics and its Applications, vol. 151, Cambridge University Press, Cambridge, 2014. MR 3155183
Bibliographic Information
- Ansgar Freyer
- Affiliation: Technische Universität Wien, Institut für Diskrete Mathematik und Geometrie, Wiedner Hauptstraße 8-10/1046, A-1040 Wien, Austria
- MR Author ID: 1494291
- Email: ansgar.freyer@tuwien.ac.at
- Martin Henk
- Affiliation: Technische Universität Berlin, Institut für Mathematik, Sekr. MA4-1, Straße des 17 Juni 136, D-10623 Berlin, Germany
- MR Author ID: 304022
- Email: henk@math.tu-berlin.de
- Received by editor(s): April 25, 2023
- Received by editor(s) in revised form: December 7, 2023
- Published electronically: May 7, 2024
- Additional Notes: The first author was partially supported by the Austrian Science Fund (FWF) Project P34446-N.
- Communicated by: Gaoyang Zhang
- © Copyright 2024 by the authors
- Journal: Proc. Amer. Math. Soc. 152 (2024), 3063-3074
- MSC (2020): Primary 52A20, 52A23, 52A40, 52C07; Secondary 52C17
- DOI: https://doi.org/10.1090/proc/16753
- MathSciNet review: 4753288