Kernel approximation for weighted Bergman spaces on tube domains
HTML articles powered by AMS MathViewer
- by Yun Huang, Tao Qian and Dawei Zhang;
- Proc. Amer. Math. Soc. 152 (2024), 2877-2892
- DOI: https://doi.org/10.1090/proc/16757
- Published electronically: May 7, 2024
- HTML | PDF | Request permission
Abstract:
Based on recent advancements of reproducing kernels in several complex variables, the theory of rational approximation for weighted Bergman spaces on tube domains over cones is developed. By verifying the boundary vanishing property, the existence of optimal parameters and the corresponding orthogonal functions are obtained.References
- Daniel Alpay, Fabrizio Colombo, Tao Qian, and Irene Sabadini, Adaptive orthonormal systems for matrix-valued functions, Proc. Amer. Math. Soc. 145 (2017), no. 5, 2089–2106. MR 3611323, DOI 10.1090/proc/13359
- Daniel Alpay, Fabrizio Colombo, Tao Qian, and Irene Sabadini, Adaptative decomposition: the case of the Drury-Arveson space, J. Fourier Anal. Appl. 23 (2017), no. 6, 1426–1444. MR 3735586, DOI 10.1007/s00041-016-9508-4
- Joseph A. Ball and Nir Cohen, de Branges-Rovnyak operator models and systems theory: a survey, Topics in matrix and operator theory (Rotterdam, 1989) Oper. Theory Adv. Appl., vol. 50, Birkhäuser, Basel, 1991, pp. 93–136. MR 1115026, DOI 10.1007/978-3-0348-5672-0_{5}
- Adhemar Bultheel, Pablo González-Vera, Erik Hendriksen, and Olav Njåstad, Orthogonal rational functions, Cambridge Monographs on Applied and Computational Mathematics, vol. 5, Cambridge University Press, Cambridge, 1999. MR 1676258, DOI 10.1017/CBO9780511530050
- David Békollé, Aline Bonami, Gustavo Garrigós, Cyrille Nana, Marco M. Peloso, and Fulvio Ricci, Lecture notes on Bergman projectors in tube domains over cones: an analytic and geometric viewpoint, IMHOTEP J. Afr. Math. Pures Appl. 5 (2004), Exp. I, front matter + ii + 75. MR 2244169
- Alexander Borichev, Remi Dhuez, and Karim Kellay, Sampling and interpolation in large Bergman and Fock spaces, J. Funct. Anal. 242 (2007), no. 2, 563–606. MR 2274822, DOI 10.1016/j.jfa.2006.09.002
- Joseph A. Ball and Vladimir Bolotnikov, Weighted Bergman spaces: shift-invariant subspaces and input/state/output linear systems, Integral Equations Operator Theory 76 (2013), no. 3, 301–356. MR 3065298, DOI 10.1007/s00020-013-2053-5
- Ronald R. Coifman and Stefan Steinerberger, Nonlinear phase unwinding of functions, J. Fourier Anal. Appl. 23 (2017), no. 4, 778–809. MR 3685990, DOI 10.1007/s00041-016-9489-3
- Ronald R. Coifman and Jacques Peyrière, Phase unwinding, or invariant subspace decompositions of Hardy spaces, J. Fourier Anal. Appl. 25 (2019), no. 3, 684–695. MR 3953482, DOI 10.1007/s00041-018-9623-5
- Yaohua Deng, Li Huang, Tao Zhao, and Dechao Zheng, Bergman projection and Bergman spaces, J. Operator Theory 46 (2001), no. 1, 3–24. MR 1862176
- Guan-Tie Deng, Yun Huang, and Tao Qian, Paley-Wiener-type theorem for analytic functions in tubular domains, J. Math. Anal. Appl. 480 (2019), no. 1, 123367, 20. MR 3994913, DOI 10.1016/j.jmaa.2019.07.057
- Guan-Tie Deng, Yun Huang, and Tao Qian, Reproducing kernels of some weighted Bergman spaces, J. Geom. Anal. 31 (2021), no. 10, 9527–9550. MR 4303932, DOI 10.1007/s12220-021-00616-1
- Jacques Faraut and Adam Korányi, Analysis on symmetric cones, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1994. Oxford Science Publications. MR 1446489, DOI 10.1093/oso/9780198534778.001.0001
- Brett Ninness, Håkan Hjalmarsson, and Fredrik Gustafsson, Generalized Fourier and Toeplitz results for rational orthonormal bases, SIAM J. Control Optim. 37 (1999), no. 2, 429–460. MR 1655861, DOI 10.1137/S0363012996305437
- Haakan Hedenmalm, Boris Korenblum, and Kehe Zhu, Theory of Bergman spaces, Graduate Texts in Mathematics, vol. 199, Springer-Verlag, New York, 2000. MR 1758653, DOI 10.1007/978-1-4612-0497-8
- Hansong Huang and Pan Ma, Multiplication operators defined by twisted proper holomorphic maps on Bergman spaces, New York J. Math. 26 (2020), 303–321. MR 4075253
- Y. Huang, G.-T. Deng, and T. Qian, Integral representations in weighted Bergman spaces on tube domains, Complex Var. Elliptic Equ. (2023) DOI: 10.1080/17476933.2023.2178425.
- Steven G. Krantz, Geometric analysis of the Bergman kernel and metric, Graduate Texts in Mathematics, vol. 268, Springer, New York, 2013. MR 3114665, DOI 10.1007/978-1-4614-7924-6
- Pan Ma and Dechao Zheng, Compact truncated Toeplitz operators, J. Funct. Anal. 270 (2016), no. 11, 4256–4279. MR 3484969, DOI 10.1016/j.jfa.2016.01.023
- Pan Ma, Fugang Yan, Dechao Zheng, and Kehe Zhu, Products of Hankel operators on the Fock space, J. Funct. Anal. 277 (2019), no. 8, 2644–2663. MR 3990730, DOI 10.1016/j.jfa.2019.01.003
- Weixiong Mai and Tao Qian, The Fourier type expansions on tubes, Complex Var. Elliptic Equ. 67 (2022), no. 2, 433–461. MR 4386504, DOI 10.1080/17476933.2020.1833868
- J. N. Pandey and O. P. Singh, Characterization of functions with Fourier transform supported on orthants, J. Math. Anal. Appl. 185 (1994), no. 2, 438–463. MR 1283069, DOI 10.1006/jmaa.1994.1260
- Tao Qian and Yan-Bo Wang, Adaptive Fourier series—a variation of greedy algorithm, Adv. Comput. Math. 34 (2011), no. 3, 279–293. MR 2776445, DOI 10.1007/s10444-010-9153-4
- Tao Qian, Two-dimensional adaptive Fourier decomposition, Math. Methods Appl. Sci. 39 (2016), no. 10, 2431–2448. MR 3512759, DOI 10.1002/mma.3649
- Wei Qu and Pei Dang, Rational approximation in a class of weighted Hardy spaces, Complex Anal. Oper. Theory 13 (2019), no. 4, 1827–1852. MR 3957017, DOI 10.1007/s11785-018-0862-x
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, NJ, 1971. MR 304972
- A. G. Sergeev and V. S. Vladimirov, Complex analysis in the future tube, several complex variables II, Encyclopaedia of Mathematical Sciences, vol. 8, Springer, Berlin, Heidelberg, 1994.
- Saburou Saitoh and Yoshihiro Sawano, Theory of reproducing kernels and applications, Developments in Mathematics, vol. 44, Springer, Singapore, 2016. MR 3560890, DOI 10.1007/978-981-10-0530-5
- J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, 3rd ed., American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, RI, 1960. MR 218587
- Rui Wang, Yuesheng Xu, and Haizhang Zhang, Fast nonlinear Fourier expansions, Adv. Adapt. Data Anal. 1 (2009), no. 3, 373–405. MR 2669188, DOI 10.1142/S1793536909000163
- Hio Tong Wu, Ieng Tak Leong, and Tao Qian, Adaptive rational approximation in Bergman space on bounded symmetric domain, J. Math. Anal. Appl. 506 (2022), no. 1, Paper No. 125591, 25. MR 4310036, DOI 10.1016/j.jmaa.2021.125591
- Kehe Zhu, Spaces of holomorphic functions in the unit ball, Graduate Texts in Mathematics, vol. 226, Springer-Verlag, New York, 2005. MR 2115155
Bibliographic Information
- Yun Huang
- Affiliation: School of Mathematics and Data Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People’s Republic of China
- ORCID: 0000-0001-5704-4061
- Email: yhuang12@126.com
- Tao Qian
- Affiliation: Macau Center for Mathematical Sciences, Macau University of Science and Technology, Macau, People’s Republic of China
- MR Author ID: 208864
- ORCID: 0000-0002-8780-9958
- Email: tqian@must.edu.mo
- Dawei Zhang
- Affiliation: School of Mathematics and Big Data, Foshan University, Foshan 528000, People’s Republic of China
- MR Author ID: 1308672
- Email: daweizhang23@163.com
- Received by editor(s): October 3, 2023
- Received by editor(s) in revised form: December 3, 2023
- Published electronically: May 7, 2024
- Additional Notes: The first author was supported by the National Natural Science Foundation of China Grant: 12301101 and the Guangdong Basic and Applied Basic Research Foundation Grant: 2022A1515110019.
The second author was supported by the Science and Technology Development Fund of Macau SAR Grants: FDCT0128/2022/A, 0020/2023/RIB1, 0111/2023/AFJ, 005/2022/ALC
The third author was supported by the National Natural Science Foundation of China Grant: 12101121 and the Guangdong Basic and Applied Basic Research Foundation Grant: 2020A1515110585.
The second author is the corresponding author - Communicated by: Javad Mashreghi
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 2877-2892
- MSC (2020): Primary 32A30, 32A36, 41A20
- DOI: https://doi.org/10.1090/proc/16757
- MathSciNet review: 4753275