Embedding of $\mathcal {Q}_p$ into tent spaces
HTML articles powered by AMS MathViewer
- by Xiaofen Lv;
- Proc. Amer. Math. Soc. 152 (2024), 2893-2903
- DOI: https://doi.org/10.1090/proc/16758
- Published electronically: May 7, 2024
- HTML | PDF | Request permission
Abstract:
In this paper, we prove embedding theorems for the Möbius invariant space $\mathcal {Q}_p$ on the open unit ball of $\mathbb {C}^n$ into logarithmic tent spaces in the Bergman metric.References
- J. Arazy, S. D. Fisher, and J. Peetre, Möbius invariant function spaces, J. Reine Angew. Math. 363 (1985), 110–145. MR 814017, DOI 10.1007/BFb0078341
- Rauno Aulaskari, David A. Stegenga, and Jie Xiao, Some subclasses of BMOA and their characterization in terms of Carleson measures, Rocky Mountain J. Math. 26 (1996), no. 2, 485–506. MR 1406492, DOI 10.1216/rmjm/1181072070
- Rauno Aulaskari, Jie Xiao, and Ru Han Zhao, On subspaces and subsets of BMOA and UBC, Analysis 15 (1995), no. 2, 101–121. MR 1344246, DOI 10.1524/anly.1995.15.2.101
- Guanlong Bao, Javad Mashreghi, Stamatis Pouliasis, and Hasi Wulan, Möbius invariant function spaces and Dirichlet spaces with superharmonic weights, J. Aust. Math. Soc. 106 (2019), no. 1, 1–18. MR 3897398, DOI 10.1017/S1446788718000022
- Lennart Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958), 921–930. MR 117349, DOI 10.2307/2372840
- Lennart Carleson, Interpolations by bounded analytic functions and the corona problem, Ann. of Math. (2) 76 (1962), 547–559. MR 141789, DOI 10.2307/1970375
- Joseph A. Cima and Warren R. Wogen, A Carleson measure theorem for the Bergman space on the ball, J. Operator Theory 7 (1982), no. 1, 157–165. MR 650200
- John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
- William W. Hastings, A Carleson measure theorem for Bergman spaces, Proc. Amer. Math. Soc. 52 (1975), 237–241. MR 374886, DOI 10.1090/S0002-9939-1975-0374886-9
- Z. J. Hu, $\mathcal {Q}_p$ spaces in the unit ball of $\mathbb {C}^n$ with $\frac {n-1}{n}<p\leq 1$, J. Huzhou Teach. Coll. 25 (2003), 1–10.
- Zhangjian Hu, Xiaofen Lv, and Kehe Zhu, Carleson measures and balayage for Bergman spaces of strongly pseudoconvex domains, Math. Nachr. 289 (2016), no. 10, 1237–1254. MR 3520714, DOI 10.1002/mana.201500021
- Xiaofen Lv and Kehe Zhu, Integrability of mean oscillation with applications to Hankel operators, Integral Equations Operator Theory 91 (2019), no. 1, Paper No. 5, 23. MR 3905349, DOI 10.1007/s00020-019-2504-8
- Daniel Luecking, A technique for characterizing Carleson measures on Bergman spaces, Proc. Amer. Math. Soc. 87 (1983), no. 4, 656–660. MR 687635, DOI 10.1090/S0002-9939-1983-0687635-6
- Daniel H. Luecking, Embedding theorems for spaces of analytic functions via Khinchine’s inequality, Michigan Math. J. 40 (1993), no. 2, 333–358. MR 1226835, DOI 10.1307/mmj/1029004756
- Junming Liu, Zengjian Lou, and Kehe Zhu, Embedding of Möbius invariant function spaces into tent spaces, J. Geom. Anal. 27 (2017), no. 2, 1013–1028. MR 3625141, DOI 10.1007/s12220-016-9708-9
- Santeri Miihkinen, Jordi Pau, Antti Perälä, and Maofa Wang, Volterra type integration operators from Bergman spaces to Hardy spaces, J. Funct. Anal. 279 (2020), no. 4, 108564, 32. MR 4095802, DOI 10.1016/j.jfa.2020.108564
- Caiheng Ouyang, Weisheng Yang, and Ruhan Zhao, Möbius invariant $Q_p$ spaces associated with the Green’s function on the unit ball of $\textbf {C}^n$, Pacific J. Math. 182 (1998), no. 1, 69–99. MR 1610626, DOI 10.2140/pjm.1998.182.69
- Marco M. Peloso, Möbius invariant spaces on the unit ball, Michigan Math. J. 39 (1992), no. 3, 509–536. MR 1182505, DOI 10.1307/mmj/1029004604
- Jie Xiao, Holomorphic $Q$ classes, Lecture Notes in Mathematics, vol. 1767, Springer-Verlag, Berlin, 2001. MR 1869752, DOI 10.1007/b87877
- Jie Xiao, Geometric $Q_p$ functions, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2006. MR 2257688
- Jie Xiao, The $\scr Q_p$ Carleson measure problem, Adv. Math. 217 (2008), no. 5, 2075–2088. MR 2388086, DOI 10.1016/j.aim.2007.08.015
- Ke He Zhu, Positive Toeplitz operators on weighted Bergman spaces of bounded symmetric domains, J. Operator Theory 20 (1988), no. 2, 329–357. MR 1004127
- Kehe Zhu, Spaces of holomorphic functions in the unit ball, Graduate Texts in Mathematics, vol. 226, Springer-Verlag, New York, 2005. MR 2115155
- Kehe Zhu, Operator theory in function spaces, 2nd ed., Mathematical Surveys and Monographs, vol. 138, American Mathematical Society, Providence, RI, 2007. MR 2311536, DOI 10.1090/surv/138
Bibliographic Information
- Xiaofen Lv
- Affiliation: Department of Mathematics, Huzhou University, Huzhou, Zhejiang 313000, People’s Republic of China
- ORCID: 0000-0002-7165-7523
- Email: lvxf@zjhu.edu.cn
- Received by editor(s): November 14, 2023
- Received by editor(s) in revised form: December 6, 2023
- Published electronically: May 7, 2024
- Additional Notes: The author was supported by the National Natural Science Foundation of China (Grant No. 12171150), and Zhejiang Provincial Natural Science Foundation of China (Grant No. LZ24A010004).
- Communicated by: Javad Mashreghi
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 2893-2903
- MSC (2020): Primary 47B38; Secondary 32A37
- DOI: https://doi.org/10.1090/proc/16758
- MathSciNet review: 4753276