Linear asymptotic stability of small-amplitude periodic waves of the generalized Korteweg–de Vries equations
HTML articles powered by AMS MathViewer
- by Corentin Audiard, L. Miguel Rodrigues and Changzhen Sun;
- Proc. Amer. Math. Soc. 152 (2024), 2905-2921
- DOI: https://doi.org/10.1090/proc/16778
- Published electronically: May 15, 2024
- HTML | PDF | Request permission
Abstract:
We extend the detailed study of the linearized dynamics obtained for cnoidal waves of the Korteweg–de Vries equation by Rodrigues [J. Funct. Anal. 274 (2018), pp. 2553–2605] to small-amplitude periodic traveling waves of the generalized Korteweg–de Vries equations that are not subject to Benjamin–Feir instability. With the adapted notion of stability, this provides for such waves, global-in-time bounded stability in any Sobolev space, and asymptotic stability of dispersive type. When doing so, we actually prove that such results also hold for waves of arbitrary amplitude satisfying a form of spectral stability designated here as dispersive spectral stability.References
- Jaime Angulo Pava, Nonlinear dispersive equations, Mathematical Surveys and Monographs, vol. 156, American Mathematical Society, Providence, RI, 2009. Existence and stability of solitary and periodic travelling wave solutions. MR 2567568, DOI 10.1090/surv/156
- Corentin Audiard and L. Miguel Rodrigues, About plane periodic waves of the nonlinear Schrödinger equations, Bull. Soc. Math. France 150 (2022), no. 1, 111–207 (English, with English and French summaries). MR 4440297, DOI 10.24033/bsmf.2846
- Blake Barker, Mathew A. Johnson, Pascal Noble, L. Miguel Rodrigues, and Kevin Zumbrun, Stability of viscous St. Venant roll waves: from onset to infinite Froude number limit, J. Nonlinear Sci. 27 (2017), no. 1, 285–342. MR 3600832, DOI 10.1007/s00332-016-9333-6
- S. Benzoni-Gavage, C. Mietka, and L. M. Rodrigues, Co-periodic stability of periodic waves in some Hamiltonian PDEs, Nonlinearity 29 (2016), no. 11, 3241–3308. MR 3567090, DOI 10.1088/0951-7715/29/11/3241
- S. Benzoni-Gavage, C. Mietka, and L. M. Rodrigues, Stability of periodic waves in Hamiltonian PDEs of either long wavelength or small amplitude, Indiana Univ. Math. J. 69 (2020), no. 2, 545–619. MR 4084181, DOI 10.1512/iumj.2020.69.7845
- Sylvie Benzoni-Gavage, Colin Mietka, and L. Miguel Rodrigues, Modulated equations of Hamiltonian PDEs and dispersive shocks, Nonlinearity 34 (2021), no. 1, 578–641. MR 4208451, DOI 10.1088/1361-6544/abcb0a
- S. Benzoni-Gavage, P. Noble, and L. M. Rodrigues, Slow modulations of periodic waves in Hamiltonian PDEs, with application to capillary fluids, J. Nonlinear Sci. 24 (2014), no. 4, 711–768. MR 3228473, DOI 10.1007/s00332-014-9203-z
- P. Blochas and L. M. Rodrigues, Uniform asymptotic stability for convection-reaction-diffusion equations in the inviscid limit towards Riemann shocks, Ann. Inst. H. Poincaré C Anal. Non Linéaire, to appear.
- Nate Bottman and Bernard Deconinck, KdV cnoidal waves are spectrally stable, Discrete Contin. Dyn. Syst. 25 (2009), no. 4, 1163–1180. MR 2552133, DOI 10.3934/dcds.2009.25.1163
- Grégory Faye and Luis Miguel Rodrigues, Exponential asymptotic stability of Riemann shocks of hyperbolic systems of balance laws, SIAM J. Math. Anal. 55 (2023), no. 6, 6425–6456. MR 4661722, DOI 10.1137/22M1535152
- Thierry Gallay and Mariana Hărăguş, Stability of small periodic waves for the nonlinear Schrödinger equation, J. Differential Equations 234 (2007), no. 2, 544–581. MR 2300667, DOI 10.1016/j.jde.2006.12.007
- Mariana Hǎrǎguş and Todd Kapitula, On the spectra of periodic waves for infinite-dimensional Hamiltonian systems, Phys. D 237 (2008), no. 20, 2649–2671. MR 2514124, DOI 10.1016/j.physd.2008.03.050
- Mathew A. Johnson, Pascal Noble, L. Miguel Rodrigues, Zhao Yang, and Kevin Zumbrun, Spectral stability of inviscid roll waves, Comm. Math. Phys. 367 (2019), no. 1, 265–316. MR 3933411, DOI 10.1007/s00220-018-3277-7
- Mathew A. Johnson, Pascal Noble, L. Miguel Rodrigues, and Kevin Zumbrun, Behavior of periodic solutions of viscous conservation laws under localized and nonlocalized perturbations, Invent. Math. 197 (2014), no. 1, 115–213. MR 3219516, DOI 10.1007/s00222-013-0481-0
- Mathew A. Johnson, Pascal Noble, L. Miguel Rodrigues, and Kevin Zumbrun, Spectral stability of periodic wave trains of the Korteweg–de Vries/Kuramoto-Sivashinsky equation in the Korteweg–de Vries limit, Trans. Amer. Math. Soc. 367 (2015), no. 3, 2159–2212. MR 3286511, DOI 10.1090/S0002-9947-2014-06274-0
- Todd Kapitula and Keith Promislow, Spectral and dynamical stability of nonlinear waves, Applied Mathematical Sciences, vol. 185, Springer, New York, 2013. With a foreword by Christopher K. R. T. Jones. MR 3100266, DOI 10.1007/978-1-4614-6995-7
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 203473
- Felipe Linares and Gustavo Ponce, Introduction to nonlinear dispersive equations, 2nd ed., Universitext, Springer, New York, 2015. MR 3308874, DOI 10.1007/978-1-4939-2181-2
- A. Mikikits-Leitner, Long-Time Asymptotics for the Asymptotically Periodic Korteweg-de Vries Equation, Ph.D. Thesis, Universität Wien, 2009.
- Alice Mikikits-Leitner and Gerald Teschl, Long-time asymptotics of perturbed finite-gap Korteweg-de Vries solutions, J. Anal. Math. 116 (2012), 163–218. MR 2892619, DOI 10.1007/s11854-012-0005-7
- Pascal Noble, Luis Miguel Rodrigues, and Changzhen Sun, Spectral instability of small-amplitude periodic waves of the electronic Euler-Poisson system, Nonlinearity 36 (2023), no. 9, 4615–4640. MR 4619244, DOI 10.1088/1361-6544/ace604
- L. M. Rodrigues, Asymptotic stability and modulation of periodic wavetrains, general theory & applications to thin film flows, Habilitation à diriger des recherches, Université Lyon 1, 2013.
- L. M. Rodrigues, Space-modulated stability and averaged dynamics, Journ. Équ. Dériv. Partielles 2015 (2015), no. 8, 1–15.
- L. Miguel Rodrigues, Linear asymptotic stability and modulation behavior near periodic waves of the Korteweg–de Vries equation, J. Funct. Anal. 274 (2018), no. 9, 2553–2605. MR 3771836, DOI 10.1016/j.jfa.2018.02.004
- Terence Tao, Nonlinear dispersive equations, CBMS Regional Conference Series in Mathematics, vol. 106, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006. Local and global analysis. MR 2233925, DOI 10.1090/cbms/106
- Peter E. Zhidkov, Korteweg-de Vries and nonlinear Schrödinger equations: qualitative theory, Lecture Notes in Mathematics, vol. 1756, Springer-Verlag, Berlin, 2001. MR 1831831
Bibliographic Information
- Corentin Audiard
- Affiliation: Sorbonne Université, CNRS, UMR 7598, Université de Paris, Laboratoire Jacques-Louis Lions (LJLL), F-75005 Paris, France
- MR Author ID: 904351
- Email: corentin.audiard@upmc.fr
- L. Miguel Rodrigues
- Affiliation: Univ Rennes & IUF, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France
- Email: luis-miguel.rodrigues@univ-rennes1.fr
- Changzhen Sun
- Affiliation: Université de Toulouse, CNRS, IMT - UMR 5219, UPS, F-31062 Toulouse Cedex 9, France
- MR Author ID: 1423748
- Email: czsmath@gmail.com
- Received by editor(s): May 31, 2023
- Received by editor(s) in revised form: December 13, 2023
- Published electronically: May 15, 2024
- Additional Notes: Research of the first author was partially supported by the French ANR Project NABUCO ANR-17-CE40-0025.
Research of the second author was partially supported by EPSRC grant no EP/R014604/1.
Research of the third author has been supported by the ANR LabEx CIMI (grant ANR-11-LABX-0040) within the French State Programme “Investissement d’Avenir” - Communicated by: Benoit Pausader
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 2905-2921
- MSC (2020): Primary 35B10, 35B35, 35Q53, 35P05, 37K45
- DOI: https://doi.org/10.1090/proc/16778
- MathSciNet review: 4753277