Identification of maximal C$^*$-covers of some operator algebras
HTML articles powered by AMS MathViewer
- by Benton L. Duncan;
- Proc. Amer. Math. Soc. 152 (2024), 2937-2951
- DOI: https://doi.org/10.1090/proc/16783
- Published electronically: May 9, 2024
- HTML | PDF | Request permission
Abstract:
We use results on inclusions of free products and extensions of completely positive maps to determine the maximal C$^*$-envelope for upper triangular $3 \times 3$ matrices. We consider these same results in the context of larger upper triangular matrices and graph algebras associated to cycle graphs.References
- Scott Armstrong, Ken Dykema, Ruy Exel, and Hanfeng Li, On embeddings of full amalgamated free product $C^*$-algebras, Proc. Amer. Math. Soc. 132 (2004), no. 7, 2019–2030. MR 2053974, DOI 10.1090/S0002-9939-04-07370-8
- D. Blecher, Modules over operator algebras, and the maximal C$^*$-dilation, https://doi.org/10.1006/jfan.1999.3491, 1999.
- D. Blecher and C. Le Merdy, Operator algebras and their modules - an operator space approach, Oxford University Press, Oxford, 2004.
- David P. Blecher and Benton L. Duncan, Nuclearity-related properties for nonselfadjoint algebras, J. Operator Theory 65 (2011), no. 1, 47–70. MR 2765756
- F. Boca, Free products of completely positive maps and spectral sets, https://doi.org/10.1016/0022-1236(91)90001-L, 1991.
- N. Brown and N. Ozawa, C$^*$-algebras and finite-dimensional approximations, American Mathematical Society, Providence, RI, 2008.
- Raphaël Clouâtre and Christopher Ramsey, Residually finite-dimensional operator algebras, J. Funct. Anal. 277 (2019), no. 8, 2572–2616. MR 3990728, DOI 10.1016/j.jfa.2018.12.016
- Kenneth R. Davidson and Evgenios T. A. Kakariadis, A proof of Boca’s theorem, Proc. Roy. Soc. Edinburgh Sect. A 149 (2019), no. 4, 869–876. MR 3988625, DOI 10.1017/prm.2018.50
- K. Davidson and M. Kennedy, Noncommutative Choquet theory, Preprint, 2019.
- B. Duncan, Explicit construction and uniqueness for universal operator algebras of directed graphs, https://doi.org/10.1112/S0024610705006940, 2005.
- B. Duncan, Certain free products of graph operator algebras, https://doi.org/10.1016/j.jmaa.2009.11.023, 2010.
- Eberhard Kirchberg and Simon Wassermann, $C^\ast$-algebras generated by operator systems, J. Funct. Anal. 155 (1998), no. 2, 324–351. MR 1624549, DOI 10.1006/jfan.1997.3226
- David W. Kribs and Stephen C. Power, Free semigroupoid algebras, J. Ramanujan Math. Soc. 19 (2004), no. 2, 117–159. MR 2076898
- T. Loring, Lifting solutions to perturbing problems in C$^*$-algebras, American Mathematical Society, Providence, RI, 1997.
- G. Pedersen, Pullback and pushout constructions in C$^*$-algebra theory, https://doi.org/10.1006/jfan.1999.3456, 1999.
- J. Peters, Semicrossed products of C$^*$-algebras, https://doi.org/10.1016/0022-1236(84)90063-6, 1984.
- I. Raeburn, Graph algebras, American Mathematical Society, Providence, RI, 2005.
- I. Thompson, Maximal C$^*$-covers and residual finite-dimensionality, https://doi.org/10.1016/j.jmaa.2022.126277, 2022.
- S. Wassermann, On tensor products of certain group C$^*$-algebras, https://doi.org/10.1016/0022-1236(76)90050-1, 1976.
Bibliographic Information
- Benton L. Duncan
- Affiliation: Department of Mathematics, Illinois State University, Normal, Illinois 61790
- MR Author ID: 771334
- ORCID: 0000-0001-9294-7573
- Email: bldunc1@ilstu.edu
- Received by editor(s): August 28, 2023
- Received by editor(s) in revised form: December 21, 2023
- Published electronically: May 9, 2024
- Communicated by: Matthew Kennedy
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 2937-2951
- MSC (2020): Primary 47L30, 47L40, 46L09
- DOI: https://doi.org/10.1090/proc/16783
- MathSciNet review: 4753279