Every $\Delta ^0_2$ Polish space is computable topological
HTML articles powered by AMS MathViewer
- by Nikolay Bazhenov, Alexander Melnikov and Keng Meng Ng;
- Proc. Amer. Math. Soc. 152 (2024), 3123-3136
- DOI: https://doi.org/10.1090/proc/16797
- Published electronically: May 7, 2024
- HTML | PDF | Request permission
Abstract:
We show that every $\Delta ^0_2$ Polish space admits a computable topological presentation given by an effective indexing of some non-empty open sets in the space.References
- C. J. Ash and J. Knight, Computable structures and the hyperarithmetical hierarchy, Studies in Logic and the Foundations of Mathematics, vol. 144, North-Holland Publishing Co., Amsterdam, 2000. MR 1767842
- G. Baumslag, E. Dyer, and C. F. Miller III, On the integral homology of finitely presented groups, Topology 22 (1983), no. 1, 27–46. MR 682058, DOI 10.1016/0040-9383(83)90044-7
- Nikolay Bazhenov, Matthew Harrison-Trainor, and Alexander Melnikov, Computable Stone spaces, Ann. Pure Appl. Logic 174 (2023), no. 9, Paper No. 103304, 25. MR 4609470, DOI 10.1016/j.apal.2023.103304
- G. S. Ceĭtin, Algorithmic operators in constructive complete separable metric spaces, Dokl. Akad. Nauk SSSR 128 (1959), 49–52 (Russian). MR 115910
- Rodney G. Downey and Alexander G. Melnikov, Computably compact metric spaces, Bull. Symb. Log. 29 (2023), no. 2, 170–263. MR 4616053, DOI 10.1017/bsl.2023.16
- Rod Downey and Carl G. Jockusch, Every low Boolean algebra is isomorphic to a recursive one, Proc. Amer. Math. Soc. 122 (1994), no. 3, 871–880. MR 1203984, DOI 10.1090/S0002-9939-1994-1203984-4
- Yuri L. Ershov and Sergei S. Goncharov, Constructive models, Siberian School of Algebra and Logic, Consultants Bureau, New York, 2000. MR 1749622, DOI 10.1007/978-1-4615-4305-3
- Lawrence Feiner, Hierarchies of Boolean algebras, J. Symbolic Logic 35 (1970), 365–374. MR 282805, DOI 10.2307/2270692
- S. S. Goncharov and J. F. Knight, Computable structure and non-structure theorems, Algebra and Logic 41 (2002), no. 6, 351–373.
- Vassilios Gregoriades, Tamás Kispéter, and Arno Pauly, A comparison of concepts from computable analysis and effective descriptive set theory, Math. Structures Comput. Sci. 27 (2017), no. 8, 1414–1436. MR 3724458, DOI 10.1017/S0960129516000128
- Tanja Grubba and Klaus Weihrauch, On computable metrization, Proceedings of the Third International Conference on Computability and Complexity in Analysis (CCA 2006), Electron. Notes Theor. Comput. Sci., vol. 167, Elsevier Sci. B. V., Amsterdam, 2007, pp. 345–364. MR 2321793, DOI 10.1016/j.entcs.2006.08.020
- M. Harrison-Trainor and A. Melnikov, An arithmetic analysis of closed surfaces, Trans. Amer. Math. Soc. (2023), published online, doi: 10.1090/tran/8915.
- Matthew Harrison-Trainor, Alexander Melnikov, and Keng Meng Ng, Computability of Polish spaces up to homeomorphism, J. Symb. Log. 85 (2020), no. 4, 1664–1686. MR 4243758, DOI 10.1017/jsl.2020.67
- G. Higman, Subgroups of finitely presented groups, Proc. Roy. Soc. London Ser. A 262 (1961), 455–475. MR 130286, DOI 10.1098/rspa.1961.0132
- Mathieu Hoyrup, Takayuki Kihara, and Victor Selivanov, Degrees of non-computability of homeomorphism types of Polish spaces, Beyond the horizon of computability, Lecture Notes in Comput. Sci., vol. 12098, Springer, Cham, [2020] ©2020, pp. 189–192. MR 4139535, DOI 10.1007/978-0-387-68546-5
- N. G. Khisamiev, The arithmetic hierarchy of abelian groups, Sibirsk. Mat. Zh. 29 (1988), no. 6, 144–159 (Russian); English transl., Siberian Math. J. 29 (1988), no. 6, 987–999 (1989). MR 985295, DOI 10.1007/BF00972425
- N. G. Khisamiev, Constructive abelian groups, Handbook of recursive mathematics, Vol. 2, Stud. Logic Found. Math., vol. 139, North-Holland, Amsterdam, 1998, pp. 1177–1231. MR 1673602, DOI 10.1016/S0049-237X(98)80050-5
- H. T. Koh, A. Melnikov, and K. M. Ng, Computable topological groups, J. Symb. Log. (2023), published online, doi: 10.1017/jsl.2023.67.
- Margarita Korovina and Oleg Kudinov, The Rice-Shapiro theorem in computable topology, Log. Methods Comput. Sci. 13 (2017), no. 4, Paper No. 30, 13. MR 3744005
- Martino Lupini, Alexander Melnikov, and Andre Nies, Computable topological abelian groups, J. Algebra 615 (2023), 278–327. MR 4511344, DOI 10.1016/j.jalgebra.2022.10.003
- A. I. Mal′cev, Constructive algebras. I, Uspehi Mat. Nauk 16 (1961), no. 3(99), 3–60 (Russian). MR 151377
- Alexander G. Melnikov and Keng Meng Ng, Separating notions in effective topology, Internat. J. Algebra Comput. 33 (2023), no. 8, 1687–1711. MR 4683224, DOI 10.1142/S0218196723500649
- Alexander G. Melnikov, Computable abelian groups, Bull. Symb. Log. 20 (2014), no. 3, 315–356. MR 3271281, DOI 10.1017/bsl.2014.32
- Antonio Montalbán, Computable structure theory—within the arithmetic, Perspectives in Logic, Cambridge University Press, Cambridge; Association for Symbolic Logic, Ithaca, NY, 2021. MR 4274028, DOI 10.1017/9781108525749
- Y. N. Moschovakis, Recursive metric spaces, Fund. Math. 55 (1964), 215–238. MR 182562, DOI 10.4064/fm-55-3-215-238
- Yiannis N. Moschovakis, Descriptive set theory, 2nd ed., Mathematical Surveys and Monographs, vol. 155, American Mathematical Society, Providence, RI, 2009. MR 2526093, DOI 10.1090/surv/155
- E. Ju. Nogina, Effectively topological spaces, Dokl. Akad. Nauk SSSR 169 (1966), 28–31 (Russian). MR 207559
- Michael O. Rabin, Computable algebra, general theory and theory of computable fields, Trans. Amer. Math. Soc. 95 (1960), 341–360. MR 113807, DOI 10.1090/S0002-9947-1960-0113807-4
- Matthias Schröder, Effective metrization of regular spaces, Computability and Complexity in Analysis, Informatik Berichte 235 (1998), 63–80.
- Dieter Spreen, A characterization of effective topological spaces, Recursion theory week (Oberwolfach, 1989) Lecture Notes in Math., vol. 1432, Springer, Berlin, 1990, pp. 363–387. MR 1071526, DOI 10.1007/BFb0086126
- Klaus Weihrauch and Tanja Grubba, Elementary computable topology, J.UCS 15 (2009), no. 6, 1381–1422. MR 2534366
Bibliographic Information
- Nikolay Bazhenov
- Affiliation: Kazakh-British Technical University, Almaty, Kazakhstan; and Nazarbayev University, Astana, Kazakhstan
- MR Author ID: 1019336
- Alexander Melnikov
- Affiliation: Victoria University of Wellington, Wellington, New Zealand
- MR Author ID: 878230
- ORCID: 0000-0001-8781-7432
- Keng Meng Ng
- Affiliation: School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
- MR Author ID: 833062
- ORCID: 0000-0002-7113-0596
- Received by editor(s): August 31, 2023
- Received by editor(s) in revised form: November 23, 2023
- Published electronically: May 7, 2024
- Additional Notes: The research of the first and second authors was funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan (Grant No. AP19676989). The work of the first author was supported by Nazarbayev University Faculty Development Competitive Research Grants 201223FD8823. The second author was partially supported by Rutherford Discovery Fellowship (Wellington) RDF-VUW1902, Royal Society Te Aparangi.
The third author was supported by the Ministry of Education, Singapore, under its Academic Research Fund Tier 2 (MOE-T2EP20222-0018). - Communicated by: Vera Fischer
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 3123-3136
- MSC (2020): Primary 03C57, 03D78
- DOI: https://doi.org/10.1090/proc/16797
- MathSciNet review: 4753293