Negative eigenvalues of the conformal Laplacian
HTML articles powered by AMS MathViewer
- by Guillermo Henry and Jimmy Petean;
- Proc. Amer. Math. Soc. 152 (2024), 3085-3096
- DOI: https://doi.org/10.1090/proc/16798
- Published electronically: May 15, 2024
- HTML | PDF | Request permission
Abstract:
Let $M$ be a closed differentiable manifold of dimension at least $3$. Let $\Lambda _0 (M)$ be the minimum number of non-positive eigenvalues that the conformal Laplacian of a metric on $M$ can have. We prove that for any $k$ greater than or equal to $\Lambda _0 (M)$, there exists a Riemannian metric on $M$ such that its conformal Laplacian has exactly $k$ negative eigenvalues. Also, we discuss upper bounds for $\Lambda _0 (M)$.References
- Thierry Aubin, Some nonlinear problems in Riemannian geometry, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. MR 1636569, DOI 10.1007/978-3-662-13006-3
- Michael T. Anderson, Canonical metrics on 3-manifolds and 4-manifolds, Asian J. Math. 10 (2006), no. 1, 127–163. MR 2213687, DOI 10.4310/AJM.2006.v10.n1.a8
- C. Bär and M. Dahl, Small eigenvalues of the conformal Laplacian, Geom. Funct. Anal. 13 (2003), no. 3, 483–508. MR 1995796, DOI 10.1007/s00039-003-0419-6
- Yaiza Canzani, Rod Gover, Dmitry Jakobson, and Raphaël Ponge, Conformal invariants from nodal sets. I. Negative eigenvalues and curvature prescription, Int. Math. Res. Not. IMRN 9 (2014), 2356–2400. With an appendix by Gover and Andrea Malchiodi. MR 3207371
- Halldór I. Elíasson, On variations of metrics, Math. Scand. 29 (1971), 317–327 (1972). MR 312427, DOI 10.7146/math.scand.a-11058
- S. El Sayed, Second eigenvalue of the Yamabe operator and applications, Calc. Var. Partial Differential Equations 50 (2014), no. 3-4, 665–692. MR 3216829, DOI 10.1007/s00526-013-0651-3
- A. Rod Gover, Asma Hassannezhad, Dmitry Jakobson, and Michael Levitin, Zero and negative eigenvalues of the conformal Laplacian, J. Spectr. Theory 6 (2016), no. 4, 793–806. MR 3584184, DOI 10.4171/JST/142
- Mikhael Gromov and H. Blaine Lawson Jr., The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. (2) 111 (1980), no. 3, 423–434. MR 577131, DOI 10.2307/1971103
- Nigel Hitchin, Harmonic spinors, Advances in Math. 14 (1974), 1–55. MR 358873, DOI 10.1016/0001-8708(74)90021-8
- D. D. Joyce, Compact $8$-manifolds with holonomy $\textrm {Spin}(7)$, Invent. Math. 123 (1996), no. 3, 507–552. MR 1383960, DOI 10.1007/s002220050039
- Jerry L. Kazdan and F. W. Warner, Scalar curvature and conformal deformation of Riemannian structure, J. Differential Geometry 10 (1975), 113–134. MR 365409
- Jerry L. Kazdan and F. W. Warner, A direct approach to the determination of Gaussian and scalar curvature functions, Invent. Math. 28 (1975), 227–230. MR 375154, DOI 10.1007/BF01425558
- Osamu Kobayashi, Scalar curvature of a metric with unit volume, Math. Ann. 279 (1987), no. 2, 253–265. MR 919505, DOI 10.1007/BF01461722
- Antoni A. Kosinski, Differential manifolds, Pure and Applied Mathematics, vol. 138, Academic Press, Inc., Boston, MA, 1993. MR 1190010
- H. Blaine Lawson Jr. and Marie-Louise Michelsohn, Spin geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ, 1989. MR 1031992
- Claude LeBrun, Kodaira dimension and the Yamabe problem, Comm. Anal. Geom. 7 (1999), no. 1, 133–156. MR 1674105, DOI 10.4310/CAG.1999.v7.n1.a5
- John M. Lee and Thomas H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.) 17 (1987), no. 1, 37–91. MR 888880, DOI 10.1090/S0273-0979-1987-15514-5
- André Lichnerowicz, Spineurs harmoniques, C. R. Acad. Sci. Paris 257 (1963), 7–9 (French). MR 156292
- John W. Milnor, Remarks concerning spin manifolds, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, NJ, 1965, pp. 55–62. MR 180978
- Jimmy Petean, The Yamabe invariant of simply connected manifolds, J. Reine Angew. Math. 523 (2000), 225–231. MR 1762961, DOI 10.1515/crll.2000.049
- Jimmy Petean, Computations of the Yamabe invariant, Math. Res. Lett. 5 (1998), no. 6, 703–709. MR 1671183, DOI 10.4310/MRL.1998.v5.n6.a1
- Richard M. Schoen, Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, Topics in calculus of variations (Montecatini Terme, 1987) Lecture Notes in Math., vol. 1365, Springer, Berlin, 1989, pp. 120–154. MR 994021, DOI 10.1007/BFb0089180
- R. Schoen and Shing Tung Yau, Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature, Ann. of Math. (2) 110 (1979), no. 1, 127–142. MR 541332, DOI 10.2307/1971247
- Stephan Stolz, Simply connected manifolds of positive scalar curvature, Ann. of Math. (2) 136 (1992), no. 3, 511–540. MR 1189863, DOI 10.2307/2946598
Bibliographic Information
- Guillermo Henry
- Affiliation: Departamento de Matemática, FCEyN, Universidad de Buenos Aires; IMAS, CONICET-UBA, Ciudad Universitaria, Pab. I., C1428EHA, Buenos Aires, Argentina and CONICET, Argentina
- MR Author ID: 877695
- Email: ghenry@dm.uba.ar
- Jimmy Petean
- Affiliation: CIMAT, A.P. 402, 36000, Guanajuato. Gto., México
- MR Author ID: 626122
- Email: jimmy@cimat.mx
- Received by editor(s): September 5, 2023
- Received by editor(s) in revised form: December 30, 2023
- Published electronically: May 15, 2024
- Additional Notes: The first author was partially supported by PICT-2020-01302 grant from ANPCyT
The second author was supported by Fondo Sectorial SEP-CONACYT, grant A1-S-45886. - Communicated by: Jiaping Wang
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 3085-3096
- MSC (2020): Primary 53C21
- DOI: https://doi.org/10.1090/proc/16798
- MathSciNet review: 4753290