Pogorelov estimates for semi-convex solutions of $k$-curvature equations
HTML articles powered by AMS MathViewer
- by Xiaojuan Chen, Qiang Tu and Ni Xiang;
- Proc. Amer. Math. Soc. 152 (2024), 2923-2936
- DOI: https://doi.org/10.1090/proc/16820
- Published electronically: May 9, 2024
- HTML | PDF | Request permission
Abstract:
In this paper, we consider $k$-curvature equations $\sigma _k(\kappa [M_u])=f(x,u,\nabla u)$ subject to $(k+1)$-convex Dirichlet boundary data instead of affine Dirichlet data of Sheng, Urbas, and Wang [Duke Math. J. 123 (2004), pp. 235–264]. By using the crucial concavity inequality for Hessian operator of Lu [Calc. Var. Partial Differential Equations 62 (2023), p.23], we derive Pogorelov estimates of semi-convex admissible solutions for these $k$-curvature equations.References
- Simon Brendle, Kyeongsu Choi, and Panagiota Daskalopoulos, Asymptotic behavior of flows by powers of the Gaussian curvature, Acta Math. 219 (2017), no. 1, 1–16. MR 3765656, DOI 10.4310/ACTA.2017.v219.n1.a1
- L. Caffarelli, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampère equation, Comm. Pure Appl. Math. 37 (1984), no. 3, 369–402. MR 739925, DOI 10.1002/cpa.3160370306
- Chuanqiang Chen, Weisong Dong, and Fei Han, Interior Hessian estimates for a class of Hessian type equations, Calc. Var. Partial Differential Equations 62 (2023), no. 2, Paper No. 52, 15. MR 4525733, DOI 10.1007/s00526-022-02385-3
- Li Chen, Qiang Tu, and Ni Xiang, Pogorelov type estimates for a class of Hessian quotient equations, J. Differential Equations 282 (2021), 272–284. MR 4217915, DOI 10.1016/j.jde.2021.02.030
- Kai-Seng Chou and Xu-Jia Wang, A variational theory of the Hessian equation, Comm. Pure Appl. Math. 54 (2001), no. 9, 1029–1064. MR 1835381, DOI 10.1002/cpa.1016
- Jianchun Chu, A simple proof of curvature estimate for convex solution of $k$-Hessian equation, Proc. Amer. Math. Soc. 149 (2021), no. 8, 3541–3552. MR 4273155, DOI 10.1090/proc/15408
- Jianchun Chu and Heming Jiao, Curvature estimates for a class of Hessian type equations, Calc. Var. Partial Differential Equations 60 (2021), no. 3, Paper No. 90, 18. MR 4249868, DOI 10.1007/s00526-021-01930-w
- Paul Gauduchon, La $1$-forme de torsion d’une variété hermitienne compacte, Math. Ann. 267 (1984), no. 4, 495–518 (French). MR 742896, DOI 10.1007/BF01455968
- Bo Guan, The Dirichlet problem for Hessian equations on Riemannian manifolds, Calc. Var. Partial Differential Equations 8 (1999), no. 1, 45–69. MR 1666866, DOI 10.1007/s005260050116
- Bo Guan, Joel Spruck, and Ling Xiao, Interior curvature estimates and the asymptotic plateau problem in hyperbolic space, J. Differential Geom. 96 (2014), no. 2, 201–222. MR 3178439
- Pengfei Guan, Junfang Li, and Yanyan Li, Hypersurfaces of prescribed curvature measure, Duke Math. J. 161 (2012), no. 10, 1927–1942. MR 2954620, DOI 10.1215/00127094-1645550
- Pengfei Guan and Guohuan Qiu, Interior $C^2$ regularity of convex solutions to prescribing scalar curvature equations, Duke Math. J. 168 (2019), no. 9, 1641–1663. MR 3961212, DOI 10.1215/00127094-2019-0001
- Pengfei Guan, Changyu Ren, and Zhizhang Wang, Global $C^2$-estimates for convex solutions of curvature equations, Comm. Pure Appl. Math. 68 (2015), no. 8, 1287–1325. MR 3366747, DOI 10.1002/cpa.21528
- Pengfei Guan and Xiangwen Zhang, A class of curvature type equations, Pure Appl. Math. Q. 17 (2021), no. 3, 865–907. MR 4278951, DOI 10.4310/PAMQ.2021.v17.n3.a2
- N. M. Ivochkina, Solution of the Dirichlet problem for equations of $m$th order curvature, Mat. Sb. 180 (1989), no. 7, 867–887, 991 (Russian); English transl., Math. USSR-Sb. 67 (1990), no. 2, 317–339. MR 1014618, DOI 10.1070/SM1990v067n02ABEH002089
- N. M. Ivochkina, The Dirichlet problem for the curvature equation of order $m$, Algebra i Analiz 2 (1990), no. 3, 192–217 (Russian); English transl., Leningrad Math. J. 2 (1991), no. 3, 631–654. MR 1073214
- Feida Jiang and Neil S. Trudinger, On Pogorelov estimates in optimal transportation and geometric optics, Bull. Math. Sci. 4 (2014), no. 3, 407–431. MR 3277881, DOI 10.1007/s13373-014-0055-5
- H. M. Jiao and Y. Jiao, The Pogorelov estimates for degenerate curvature equations, arXiv:2207.00863, 2022.
- Heming Jiao and Zhizhang Wang, The Dirichlet problem for degenerate curvature equations, J. Funct. Anal. 283 (2022), no. 1, Paper No. 109485, 29. MR 4404071, DOI 10.1016/j.jfa.2022.109485
- N. V. Krylov, On the general notion of fully nonlinear second-order elliptic equations, Trans. Amer. Math. Soc. 347 (1995), no. 3, 857–895. MR 1284912, DOI 10.1090/S0002-9947-1995-1284912-8
- Ming Li, Changyu Ren, and Zhizhang Wang, An interior estimate for convex solutions and a rigidity theorem, J. Funct. Anal. 270 (2016), no. 7, 2691–2714. MR 3464054, DOI 10.1016/j.jfa.2016.01.008
- Jiakun Liu and Neil S. Trudinger, On Pogorelov estimates for Monge-Ampère type equations, Discrete Contin. Dyn. Syst. 28 (2010), no. 3, 1121–1135. MR 2644782, DOI 10.3934/dcds.2010.28.1121
- Yue Liu and Changyu Ren, Pogorelov type $C^2$ estimates for sum Hessian equations and a rigidity theorem, J. Funct. Anal. 284 (2023), no. 1, Paper No. 109726, 32. MR 4494562, DOI 10.1016/j.jfa.2022.109726
- Siyuan Lu, Curvature estimates for semi-convex solutions of Hessian equations in hyperbolic space, Calc. Var. Partial Differential Equations 62 (2023), no. 9, Paper No. 257, 23. MR 4659885, DOI 10.1007/s00526-023-02598-0
- Matt McGonagle, Chong Song, and Yu Yuan, Hessian estimates for convex solutions to quadratic Hessian equation, Ann. Inst. H. Poincaré C Anal. Non Linéaire 36 (2019), no. 2, 451–454. MR 3913193, DOI 10.1016/j.anihpc.2018.07.001
- Aleksey Vasil′yevich Pogorelov, The Minkowski multidimensional problem, Scripta Series in Mathematics, V. H. Winston & Sons, Washington, DC; Halsted Press [John Wiley & Sons], New York-Toronto-London, 1978. Translated from the Russian by Vladimir Oliker; Introduction by Louis Nirenberg. MR 478079
- Changyu Ren and Zhizhang Wang, On the curvature estimates for Hessian equations, Amer. J. Math. 141 (2019), no. 5, 1281–1315. MR 4011801, DOI 10.1353/ajm.2019.0033
- Zhizhang Wang, The global curvature estimates for Hessian equations, Proceedings of the International Consortium of Chinese Mathematicians 2018, Int. Press, Boston, MA, [2020] ©2020, pp. 367–384. MR 4251152
- Weimin Sheng, John Urbas, and Xu-Jia Wang, Interior curvature bounds for a class of curvature equations, Duke Math. J. 123 (2004), no. 2, 235–264. MR 2066938, DOI 10.1215/S0012-7094-04-12321-8
- Joel Spruck and Ling Xiao, A note on star-shaped compact hypersurfaces with prescribed scalar curvature in space forms, Rev. Mat. Iberoam. 33 (2017), no. 2, 547–554. MR 3651014, DOI 10.4171/RMI/948
- Gábor Székelyhidi, Valentino Tosatti, and Ben Weinkove, Gauduchon metrics with prescribed volume form, Acta Math. 219 (2017), no. 1, 181–211. MR 3765661, DOI 10.4310/ACTA.2017.v219.n1.a6
- John Urbas, An interior curvature bound for hypersurfaces of prescribed $k$-th mean curvature, J. Reine Angew. Math. 519 (2000), 41–57. MR 1739731, DOI 10.1515/crll.2000.016
- Micah Warren and Yu Yuan, Hessian estimates for the sigma-2 equation in dimension 3, Comm. Pure Appl. Math. 62 (2009), no. 3, 305–321. MR 2487850, DOI 10.1002/cpa.20251
Bibliographic Information
- Xiaojuan Chen
- Affiliation: Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied Mathematics, Hubei University, Wuhan 430062, People’s Republic of China
- Email: 201911110410741@stu.hubu.edu.cn
- Qiang Tu
- Affiliation: Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied Mathematics, Hubei University, Wuhan 430062, People’s Republic of China
- MR Author ID: 1195631
- ORCID: 0000-0001-8664-316X
- Email: qiangtu@hubu.edu.cn
- Ni Xiang
- Affiliation: Faculty of Mathematics and Statistics, Hubei Key Laboratory of Applied Mathematics, Hubei University, Wuhan 430062, Peopl’s Republic of China
- Email: nixiang@hubu.edu.cn
- Received by editor(s): July 4, 2023
- Received by editor(s) in revised form: December 20, 2023
- Published electronically: May 9, 2024
- Additional Notes: This research was supported by funds from the National Natural Science Foundation of China No. 11971157, 12101206; the Natural Science Foundation of Hubei Province, China, No. 2023AFB730
The second author is the corresponding author - Communicated by: Ryan Hynd
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 2923-2936
- MSC (2020): Primary 32W50, 53C55
- DOI: https://doi.org/10.1090/proc/16820
- MathSciNet review: 4753278