Vanishing linear periods of cuspidal automorphic sheaves for $\operatorname {GL}_{m+n}$
HTML articles powered by AMS MathViewer
- by Fang Shi;
- Proc. Amer. Math. Soc. 152 (2024), 2763-2775
- DOI: https://doi.org/10.1090/proc/16836
- Published electronically: May 15, 2024
- HTML | PDF | Request permission
Abstract:
In this paper, we prove a vanishing theorem concerning the periods of cuspidal automorphic sheaves for $\operatorname {GL}_{m+n}$ along the Levi subgroup $\operatorname {GL}_{m}\times \operatorname {GL}_{n}$ for $m \neq n$.References
- Gérard Laumon, Correspondance de Langlands géométrique pour les corps de fonctions, Duke Math. J. 54 (1987), no. 2, 309–359 (French). MR 899400, DOI 10.1215/S0012-7094-87-05418-4
- E. Frenkel, D. Gaitsgory, and K. Vilonen, On the geometric Langlands conjecture, J. Amer. Math. Soc. 15 (2002), no. 2, 367–417. MR 1887638, DOI 10.1090/S0894-0347-01-00388-5
- D. Gaitsgory, On a vanishing conjecture appearing in the geometric Langlands correspondence, Ann. of Math. (2) 160 (2004), no. 2, 617–682. MR 2123934, DOI 10.4007/annals.2004.160.617
- G. Laumon, Faisceaux automorphes pour GL(n): la premiere construction de Drinfeld, arXiv:alg-geom/9511004, 1995.
- Solomon Friedberg and Hervé Jacquet, Linear periods, J. Reine Angew. Math. 443 (1993), 91–139. MR 1241129, DOI 10.1515/crll.1993.443.91
- S. Lysenko, Linear periods of automorphic sheaves for $\textrm {GL}_{2n}$, Int. Math. Res. Not. IMRN 17 (2022), 12984–13053. MR 4475271, DOI 10.1093/imrn/rnab077
- D. Arinkin, D. Gaitsgory, D. Kazhdan, S. Raskin, N. Rozenblyum, and Y. Varshavsky, The stack of local systems with restricted variation and geometric Langlands theory with nilpotent singular support, arXiv:2010.01906, 2020.
- Sergey Lysenko, Local geometrized Rankin-Selberg method for GL($n$), Duke Math. J. 111 (2002), no. 3, 451–493. MR 1885828, DOI 10.1215/S0012-7094-02-11133-8
Bibliographic Information
- Fang Shi
- Affiliation: School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, Zhejiang, People’s Republic of China
- MR Author ID: 1573504
- Email: 11935007@zju.edu.cn
- Received by editor(s): November 1, 2022
- Received by editor(s) in revised form: November 29, 2023
- Published electronically: May 15, 2024
- Communicated by: Alexander Braverman
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 2763-2775
- MSC (2020): Primary 11R39; Secondary 11S37, 11F70, 14H60
- DOI: https://doi.org/10.1090/proc/16836
- MathSciNet review: 4753266