Categorifying equivariant monoids
HTML articles powered by AMS MathViewer
- by Daniel Graves;
- Proc. Amer. Math. Soc. 152 (2024), 3689-3704
- DOI: https://doi.org/10.1090/proc/16832
- Published electronically: July 1, 2024
- HTML | PDF
Abstract:
Equivariant monoids are very important objects in many branches of mathematics: they combine the notion of multiplication and the concept of a group action. In this paper we will construct categories which encode the structure borne by monoids with a group action by combining the theory of product and permutation categories (PROPs) and product and braid categories (PROBs) with the theory of crossed simplicial groups. PROPs and PROBs are categories used to encode structures borne by objects in symmetric and braided monoidal categories respectively, whilst crossed simplicial groups are categories which encode a unital, associative multiplication and a compatible group action. We will produce PROPs and PROBs whose categories of algebras are equivalent to the categories of monoids, comonoids and bimonoids with group action using extensions of the symmetric and braid crossed simplicial groups. We will extend this theory to balanced braided monoidal categories using the ribbon braid crossed simplicial group. Finally, we will use the hyperoctahedral crossed simplicial group to encode the structure of an involutive monoid with a compatible group action.References
- Lowell Abrams, Two-dimensional topological quantum field theories and Frobenius algebras, J. Knot Theory Ramifications 5 (1996), no. 5, 569–587. MR 1414088, DOI 10.1142/S0218216596000333
- Shaun V. Ault, Symmetric homology of algebras, Algebr. Geom. Topol. 10 (2010), no. 4, 2343–2408. MR 2748335, DOI 10.2140/agt.2010.10.2343
- Shaun V. Ault, Homology operations in symmetric homology, Homology Homotopy Appl. 16 (2014), no. 2, 239–261. MR 3263894, DOI 10.4310/HHA.2014.v16.n2.a13
- John C. Baez, Brandon Coya, and Franciscus Rebro, Props in network theory, Theory Appl. Categ. 33 (2018), Paper No. 25, 727–783. MR 3852030
- A. J. Berrick, F. R. Cohen, Y. L. Wong, and J. Wu, Configurations, braids, and homotopy groups, J. Amer. Math. Soc. 19 (2006), no. 2, 265–326. MR 2188127, DOI 10.1090/S0894-0347-05-00507-2
- J. M. Boardman and R. M. Vogt, Homotopy-everything $H$-spaces, Bull. Amer. Math. Soc. 74 (1968), 1117–1122. MR 236922, DOI 10.1090/S0002-9904-1968-12070-1
- Serge Bouc, Hochschild constructions for Green functors, Comm. Algebra 31 (2003), no. 1, 403–436. MR 1969231, DOI 10.1081/AGB-120016767
- Alain Connes, Cohomologie cyclique et foncteurs $\textrm {Ext}^n$, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 23, 953–958 (French, with English summary). MR 777584
- T. Dyckerhoff and M. Kapranov, Crossed simplicial groups and structured surfaces, Stacks and categories in geometry, topology, and algebra, Contemp. Math., vol. 643, Amer. Math. Soc., Providence, RI, 2015, pp. 37–110. MR 3381470, DOI 10.1090/conm/643/12896
- B. L. Feĭgin and B. L. Tsygan, Additive $K$-theory, $K$-theory, arithmetic and geometry (Moscow, 1984–1986) Lecture Notes in Math., vol. 1289, Springer, Berlin, 1987, pp. 67–209. MR 923136, DOI 10.1007/BFb0078368
- Z. Fiedorowicz, The symmetric bar construction.
- Zbigniew Fiedorowicz and Jean-Louis Loday, Crossed simplicial groups and their associated homology, Trans. Amer. Math. Soc. 326 (1991), no. 1, 57–87. MR 998125, DOI 10.1090/S0002-9947-1991-0998125-4
- Peter J. Freyd and David N. Yetter, Braided compact closed categories with applications to low-dimensional topology, Adv. Math. 77 (1989), no. 2, 156–182. MR 1020583, DOI 10.1016/0001-8708(89)90018-2
- Daniel Graves, Props for involutive monoids and involutive bimonoids, Theory Appl. Categ. 35 (2020), Paper No. 42, 1564–1575. MR 4152486
- Daniel Graves, Composing PROBs, Theory Appl. Categ. 38 (2022), Paper No. 26, 1050–1061. MR 4483625
- Daniel Graves, Hyperoctahedral homology for involutive algebras, Homology Homotopy Appl. 24 (2022), no. 1, 1–26. MR 4344317, DOI 10.4310/HHA.2022.v24.n1.a1
- Daniel Graves, E-infinity structure in hyperoctahedral homology, Homology Homotopy Appl. 25 (2023), no. 1, 1–19. MR 4558680, DOI 10.4310/HHA.2023.v25.n1.a1
- Philip Hackney and Marcy Robertson, The homotopy theory of simplicial props, Israel J. Math. 219 (2017), no. 2, 835–902. MR 3649609, DOI 10.1007/s11856-017-1500-4
- Hvedri Inassaridze, (Co)homology of $\Gamma$-groups and $\Gamma$-homological algebra, Eur. J. Math. 8 (2022), no. suppl. 2, S720–S763. MR 4507261, DOI 10.1007/s40879-022-00558-0
- Mark W. Johnson and Donald Yau, On homotopy invariance for algebras over colored PROPs, J. Homotopy Relat. Struct. 4 (2009), no. 1, 275–315. MR 2559644
- André Joyal and Ross Street, Braided tensor categories, Adv. Math. 102 (1993), no. 1, 20–78. MR 1250465, DOI 10.1006/aima.1993.1055
- Mikhail Kapranov and Vadim Schechtman, PROBs and perverse sheaves I. Symmetric products, 2021, arXiv:2102.13321.
- Mikhail Kapranov and Vadim Schechtman, PROBs and perverse sheaves II. Ran spaces and 0-cycles with coefficients, 2022, arXiv:2209.02400.
- R. Krasauskas, Skew-simplicial groups, Litovsk. Mat. Sb. 27 (1987), no. 1, 89–99 (Russian, with English and Lithuanian summaries). MR 895962
- R. Krasauskas, Crossed simplicial groups of framed braids and mapping class groups of surfaces, Liet. Mat. Rink. 36 (1996), no. 3, 330–353 (English, with English and Lithuanian summaries); English transl., Lithuanian Math. J. 36 (1996), no. 3, 263–281 (1997). MR 1455813, DOI 10.1007/BF02986853
- Stephen Lack, Composing PROPS, Theory Appl. Categ. 13 (2004), No. 9, 147–163. MR 2116328
- Jean-Louis Loday, Cyclic homology, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, Springer-Verlag, Berlin, 1998. Appendix E by María O. Ronco; Chapter 13 by the author in collaboration with Teimuraz Pirashvili. MR 1600246, DOI 10.1007/978-3-662-11389-9
- Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 1712872
- Saunders Mac Lane, Categorical algebra, Bull. Amer. Math. Soc. 71 (1965), 40–106. MR 171826, DOI 10.1090/S0002-9904-1965-11234-4
- M. A. Mandell and J. P. May, Equivariant orthogonal spectra and $S$-modules, Mem. Amer. Math. Soc. 159 (2002), no. 755, x+108. MR 1922205, DOI 10.1090/memo/0755
- M. A. Mandell, J. P. May, S. Schwede, and B. Shipley, Model categories of diagram spectra, Proc. London Math. Soc. (3) 82 (2001), no. 2, 441–512. MR 1806878, DOI 10.1112/S0024611501012692
- M. Markl, S. Merkulov, and S. Shadrin, Wheeled PROPs, graph complexes and the master equation, J. Pure Appl. Algebra 213 (2009), no. 4, 496–535. MR 2483835, DOI 10.1016/j.jpaa.2008.08.007
- Martin Markl, Cotangent cohomology of a category and deformations, J. Pure Appl. Algebra 113 (1996), no. 2, 195–218. MR 1415558, DOI 10.1016/0022-4049(95)00152-2
- Akhil Mathew, Niko Naumann, and Justin Noel, Nilpotence and descent in equivariant stable homotopy theory, Adv. Math. 305 (2017), 994–1084. MR 3570153, DOI 10.1016/j.aim.2016.09.027
- Anibal M. Medina-Mardones, A finitely presented $E_\infty$-prop I: algebraic context, High. Struct. 4 (2020), no. 2, 1–21. MR 4133162, DOI 10.21136/HS.2020.08
- Anibal M. Medina-Mardones, A finitely presented $E_\infty$-prop II: cellular context, High. Struct. 5 (2021), no. 1, 186–203. MR 4367220, DOI 10.21136/HS.2021.05
- Thomas Nikolaus and Peter Scholze, On topological cyclic homology, Acta Math. 221 (2018), no. 2, 203–409. MR 3904731, DOI 10.4310/ACTA.2018.v221.n2.a1
- Teimuraz Pirashvili, On the PROP corresponding to bialgebras, Cah. Topol. Géom. Différ. Catég. 43 (2002), no. 3, 221–239 (English, with French summary). MR 1928233
- R. Rosebrugh, N. Sabadini, and R. F. C. Walters, Generic commutative separable algebras and cospans of graphs, Theory Appl. Categ. 15 (2005/06), No. 6, 164–177. MR 2210579
- Robert Rosebrugh and R. J. Wood, Distributive laws and factorization, J. Pure Appl. Algebra 175 (2002), no. 1-3, 327–353. Special volume celebrating the 70th birthday of Professor Max Kelly. MR 1941618, DOI 10.1016/S0022-4049(02)00140-8
Bibliographic Information
- Daniel Graves
- Affiliation: Lifelong Learning Centre, University of Leeds, Woodhouse, Leeds LS2 9JT, United Kingdom
- MR Author ID: 1402496
- Email: dan.graves92@gmail.com
- Received by editor(s): August 11, 2023
- Received by editor(s) in revised form: February 11, 2024
- Published electronically: July 1, 2024
- Communicated by: Julie Bergner
- © Copyright 2024 by Daniel Graves
- Journal: Proc. Amer. Math. Soc. 152 (2024), 3689-3704
- MSC (2020): Primary 18M85, 16T10, 16W22, 18M05, 18M15
- DOI: https://doi.org/10.1090/proc/16832
- MathSciNet review: 4781966