Combinatorial Calabi flow on surfaces of finite topological type
HTML articles powered by AMS MathViewer
- by Shengyu Li, Qianghua Luo and Yaping Xu;
- Proc. Amer. Math. Soc. 152 (2024), 4035-4047
- DOI: https://doi.org/10.1090/proc/16839
- Published electronically: July 26, 2024
- HTML | PDF | Request permission
Abstract:
This paper studies the combinatorial Calabi flow for circle patterns with obtuse exterior intersection angles on surfaces of finite topological type. By using a Lyapunov function, we show that the flow exists for all time and converges exponentially fast to a circle pattern metric with prescribed attainable curvatures. This provides an algorithm to search for the desired circle patterns.References
- E. M. Andreev, Convex polyhedra in Lobačhevskiǐ spaces, Mat. Sb. 81 (1970), 445–478.
- E. A. Barbašin and N. N. Krasovskiĭ, On the existence of Lyapunov functions in the case of asymptotic stability in the large, Akad. Nauk SSSR. Prikl. Mat. Meh. 18 (1954), 345–350 (Russian). MR 62301
- Alexander I. Bobenko, Tim Hoffmann, and Boris A. Springborn, Minimal surfaces from circle patterns: geometry from combinatorics, Ann. of Math. (2) 164 (2006), no. 1, 231–264. MR 2233848, DOI 10.4007/annals.2006.164.231
- Philip L. Bowers, The upper Perron method for labelled complexes with applications to circle packings, Math. Proc. Cambridge Philos. Soc. 114 (1993), no. 2, 321–345. MR 1230135, DOI 10.1017/S0305004100071619
- Bennett Chow and Feng Luo, Combinatorial Ricci flows on surfaces, J. Differential Geom. 63 (2003), no. 1, 97–129. MR 2015261
- F. H. Clarke, Yu. S. Ledyaev, and R. J. Stern, Asymptotic stability and smooth Lyapunov functions, J. Differential Equations 149 (1998), no. 1, 69–114. MR 1643670, DOI 10.1006/jdeq.1998.3476
- Yves Colin de Verdière, Un principe variationnel pour les empilements de cercles, Invent. Math. 104 (1991), no. 3, 655–669 (French). MR 1106755, DOI 10.1007/BF01245096
- H. Ge, Combinatorial methods and geometric equations, Thesis (Ph.D.), Peking University, Beijing, 2012, 144 pp.
- Huabin Ge, Combinatorial Calabi flows on surfaces, Trans. Amer. Math. Soc. 370 (2018), no. 2, 1377–1391. MR 3729504, DOI 10.1090/tran/7196
- Huabin Ge and Bobo Hua, On combinatorial Calabi flow with hyperbolic circle patterns, Adv. Math. 333 (2018), 523–538. MR 3818085, DOI 10.1016/j.aim.2018.05.039
- Huabin Ge, Bobo Hua, and Ze Zhou, Circle patterns on surfaces of finite topological type, Amer. J. Math. 143 (2021), no. 5, 1397–1430. MR 4334399, DOI 10.1353/ajm.2021.0035
- Huabin Ge, Bobo Hua, and Ze Zhou, Combinatorial Ricci flows for ideal circle patterns, Adv. Math. 383 (2021), Paper No. 107698, 26. MR 4235204, DOI 10.1016/j.aim.2021.107698
- David Glickenstein and Joseph Thomas, Duality structures and discrete conformal variations of piecewise constant curvature surfaces, Adv. Math. 320 (2017), 250–278. MR 3709106, DOI 10.1016/j.aim.2017.08.043
- Ren Guo, Combinatorial Yamabe flow on hyperbolic surfaces with boundary, Commun. Contemp. Math. 13 (2011), no. 5, 827–842. MR 2847231, DOI 10.1142/S0219199711004464
- Yue-Ping Jiang, QiangHua Luo, and Ze Zhou, Circle patterns on surfaces of finite topological type revisited, Pacific J. Math. 306 (2020), no. 1, 203–220. MR 4109913, DOI 10.2140/pjm.2020.306.203
- Feng Luo, Combinatorial Yamabe flow on surfaces, Commun. Contemp. Math. 6 (2004), no. 5, 765–780. MR 2100762, DOI 10.1142/S0219199704001501
- Jinsong Liu and Ze Zhou, How many cages midscribe an egg, Invent. Math. 203 (2016), no. 2, 655–673. MR 3455159, DOI 10.1007/s00222-015-0602-z
- Feng Luo, Combinatorial Yamabe flow on surfaces, Commun. Contemp. Math. 6 (2004), no. 5, 765–780. MR 2100762, DOI 10.1142/S0219199704001501
- David Minda and Burt Rodin, Circle packing and Riemann surfaces, J. Anal. Math. 57 (1991), 221–249. MR 1191748, DOI 10.1007/BF03041071
- Oded Schramm, How to cage an egg, Invent. Math. 107 (1992), no. 3, 543–560. MR 1150601, DOI 10.1007/BF01231901
- Oded Schramm, Square tilings with prescribed combinatorics, Israel J. Math. 84 (1993), no. 1-2, 97–118. MR 1244661, DOI 10.1007/BF02761693
- Kenneth Stephenson, Introduction to circle packing, Cambridge University Press, Cambridge, 2005. The theory of discrete analytic functions. MR 2131318
- W. Thurston, Geometry and topology of 3-manifolds, Princeton lecture notes, 1976.
- Wolfgang Walter, Ordinary differential equations, Graduate Texts in Mathematics, vol. 182, Springer-Verlag, New York, 1998. Translated from the sixth German (1996) edition by Russell Thompson; Readings in Mathematics. MR 1629775, DOI 10.1007/978-1-4612-0601-9
- Z. Zhou, Circle patterns with obtuse exterior intersection angles, arXiv:1703.01768, 2019.
Bibliographic Information
- Shengyu Li
- Affiliation: School of Mathematics, Hunan University, Changsha 410082, People’s Republic of China
- Email: lishengyu@hnu.edu.cn
- Qianghua Luo
- Affiliation: School of Mathematics, Foshan University, Foshan 528000, People’s Republic of China
- ORCID: 0000-0002-8164-4873
- Email: 15616203413@163.com, luo.qh@fosu.edu.cn
- Yaping Xu
- Affiliation: School of Mathematics, Hunan University, Changsha 410082, People’s Republic of China
- ORCID: 0009-0000-3163-9243
- Email: xuyaping@hnu.edu.cn
- Received by editor(s): September 23, 2023
- Received by editor(s) in revised form: January 17, 2024, and February 7, 2024
- Published electronically: July 26, 2024
- Additional Notes: The second author was supported by Guangdong Basic and Applied Basic Research Foundation (No. 2023A1515110902).
The second author is the corresponding author. - Communicated by: Gaoyang Zhang
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 4035-4047
- MSC (2020): Primary 52C25; Secondary 52C26
- DOI: https://doi.org/10.1090/proc/16839
- MathSciNet review: 4781993