Ergodic theorem for nonstationary random walks on compact abelian groups
HTML articles powered by AMS MathViewer
- by Grigorii Monakov;
- Proc. Amer. Math. Soc. 152 (2024), 3855-3866
- DOI: https://doi.org/10.1090/proc/16848
- Published electronically: July 1, 2024
- HTML | PDF | Request permission
Abstract:
We consider a nonstationary random walk on a compact metrizable abelian group. Under a classical strict aperiodicity assumption we establish a weak-* convergence to the Haar measure, Ergodic Theorem and Large Deviation Type Estimate.References
- Alejandro D. de Acosta, Large deviations for Markov chains, Cambridge Tracts in Mathematics, vol. 229, Cambridge University Press, Cambridge, 2022. MR 4586459, DOI 10.1017/9781009053129
- M. Anoussis and D. Gatzouras, A spectral radius formula for the Fourier transform on compact groups and applications to random walks, Adv. Math. 188 (2004), no. 2, 425–443. MR 2087233, DOI 10.1016/j.aim.2003.11.001
- Yves Benoist and Jean-François Quint, Random walks on reductive groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 62, Springer, Cham, 2016. MR 3560700, DOI 10.1007/978-3-319-47721-3
- Daniel Berend and Vitaly Bergelson, Ergodic and mixing sequences of transformations, Ergodic Theory Dynam. Systems 4 (1984), no. 3, 353–366. MR 776873, DOI 10.1017/S0143385700002509
- Arno Berger and Steven N. Evans, A limit theorem for occupation measures of Lévy processes in compact groups, Stoch. Dyn. 13 (2013), no. 1, 1250008, 16. MR 3007246, DOI 10.1142/S0219493712500086
- R. N. Bhattacharya, Speed of convergence of the $n$-fold convolution of a probability measure on a compact group, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 25 (1972/73), 1–10. MR 326795, DOI 10.1007/BF00533331
- Garrett Birkhoff, A note on topological groups, Compositio Math. 3 (1936), 427–430. MR 1556955
- Bence Borda, Equidistribution of random walks on compact groups, Ann. Inst. Henri Poincaré Probab. Stat. 57 (2021), no. 1, 54–72 (English, with English and French summaries). MR 4255167, DOI 10.1214/20-aihp1070
- Bence Borda, Equidistribution of random walks on compact groups II. The Wasserstein metric, Bernoulli 27 (2021), no. 4, 2598–2623. MR 4303897, DOI 10.3150/21-BEJ1324
- Philippe Bougerol and Jean Lacroix, Products of random matrices with applications to Schrödinger operators, Progress in Probability and Statistics, vol. 8, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 886674, DOI 10.1007/978-1-4684-9172-2
- Ao Cai, Pedro Duarte, and Silvius Klein, Mixed random-quasiperiodic cocycles, Bull. Braz. Math. Soc. (N.S.) 53 (2022), no. 4, 1469–1497. MR 4502841, DOI 10.1007/s00574-022-00313-9
- Ao Cai, Pedro Duarte, and Silvius Klein, Furstenberg theory of mixed random-quasiperiodic cocycles, Comm. Math. Phys. 402 (2023), no. 1, 447–487. MR 4616680, DOI 10.1007/s00220-023-04726-5
- A. Cai, P. Duarte, and S. Klein, Statistical properties for mixing Markov chains with applications to dynamical systems, arXiv:2210.16908, 2022.
- Jean-Pierre Conze and Albert Raugi, Limit theorems for sequential expanding dynamical systems on $[0,1]$, Ergodic theory and related fields, Contemp. Math., vol. 430, Amer. Math. Soc., Providence, RI, 2007, pp. 89–121. MR 2331327, DOI 10.1090/conm/430/08253
- Amir Dembo and Ofer Zeitouni, Large deviations techniques and applications, Stochastic Modelling and Applied Probability, vol. 38, Springer-Verlag, Berlin, 2010. Corrected reprint of the second (1998) edition. MR 2571413, DOI 10.1007/978-3-642-03311-7
- Zach Dietz and Sunder Sethuraman, Large deviations for a class of nonhomogeneous Markov chains, Ann. Appl. Probab. 15 (2005), no. 1A, 421–486. MR 2115048, DOI 10.1214/105051604000000990
- Dmitry Dolgopyat and Bassam Fayad, Limit theorems for toral translations, Hyperbolic dynamics, fluctuations and large deviations, Proc. Sympos. Pure Math., vol. 89, Amer. Math. Soc., Providence, RI, 2015, pp. 227–277. MR 3309100, DOI 10.1090/pspum/089/01492
- Dmitry Dolgopyat and Omri M. Sarig, Local limit theorems for inhomogeneous Markov chains, Lecture Notes in Mathematics, vol. 2331, Springer, Cham, [2023] ©2023. MR 4647462, DOI 10.1007/978-3-031-32601-1
- Randal Douc, Eric Moulines, Pierre Priouret, and Philippe Soulier, Markov chains, Springer Series in Operations Research and Financial Engineering, Springer, Cham, 2018. MR 3889011, DOI 10.1007/978-3-319-97704-1
- Pedro Duarte and Silvius Klein, Lyapunov exponents of linear cocycles, Atlantis Studies in Dynamical Systems, vol. 3, Atlantis Press, Paris, 2016. Continuity via large deviations. MR 3468528, DOI 10.2991/978-94-6239-124-6
- Alex Furman, Random walks on groups and random transformations, Handbook of dynamical systems, Vol. 1A, North-Holland, Amsterdam, 2002, pp. 931–1014. MR 1928529, DOI 10.1016/S1874-575X(02)80014-5
- Basilis Gidas, Nonstationary Markov chains and convergence of the annealing algorithm, J. Statist. Phys. 39 (1985), no. 1-2, 73–131. MR 798248, DOI 10.1007/BF01007975
- PawełGóra, Abraham Boyarsky, and Christopher Keefe, Absolutely continuous invariant measures for non-autonomous dynamical systems, J. Math. Anal. Appl. 470 (2019), no. 1, 159–168. MR 3865128, DOI 10.1016/j.jmaa.2018.09.060
- Anton Gorodetski and Victor Kleptsyn, Non-stationary version of ergodic theorem for random dynamical systems, Mosc. Math. J. 23 (2023), no. 4, 515–532. MR 4676292, DOI 10.17323/1609-4514-2023-23-4-515-532
- Donald Hackler, Compact groups of real power need not be metrizable, Proc. Amer. Math. Soc. 63 (1977), no. 1, 187. MR 442896, DOI 10.1090/S0002-9939-1977-0442896-0
- Paul R. Halmos, Measure Theory, D. Van Nostrand Co., Inc., New York, 1950. MR 33869, DOI 10.1007/978-1-4684-9440-2
- Shizuo Kakutani, Über die Metrisation der topologischen Gruppen, Proc. Imp. Acad. Tokyo 12 (1936), no. 4, 82–84 (German). MR 1568424
- Yukiyosi Kawada, On the probability distribution on a compact group. II, Proc. Phys.-Math. Soc. Japan (3) 23 (1941), 669–686. MR 20086
- Yukiyosi Kawada and Kiyosi Itô, On the probability distribution on a compact group. I, Proc. Phys.-Math. Soc. Japan (3) 22 (1940), 977–998. MR 3462
- B. Kloss, \ifTeXMLРвеÑоÑÑноÑÑнÑÑ ÑаÑпÑеделениÑÑ Ð½Ð° бикомпакÑнÑÑ ÑопологиÑеÑÐºÐ¸Ñ Ð³ÑÑÐ¿Ð¿Ð°Ñ \else\textcyr{O veroyatnostnykh raspredeleniyakh na bikompaktnykh topologicheskikh gruppakh} (Russian, English summary), Teor. Veroyatn. Primen. 4 (1959), 255–290 (Title translation), Probability distributions on bicompact topological groups.
- Paul Lévy, L’addition des variables aléatoires définies sur un circonférence, Bull. Soc. Math. France 67 (1939), 1–41 (French). MR 372, DOI 10.24033/bsmf.1288
- Guo Xin Liu and Wen Liu, On the strong law of large numbers for functionals of countable nonhomogeneous Markov chains, Stochastic Process. Appl. 50 (1994), no. 2, 375–391. MR 1273781, DOI 10.1016/0304-4149(94)90129-5
- Wen Liu and Guo Xin Liu, A class of strong laws for functionals of countable nonhomogeneous Markov chains, Statist. Probab. Lett. 22 (1995), no. 2, 87–96. MR 1327733, DOI 10.1016/0167-7152(94)00053-B
- Liu Wen and Yang Weiguo, An extension of Shannon-McMillan theorem and some limit properties for nonhomogeneous Markov chains, Stochastic Process. Appl. 61 (1996), no. 1, 129–145. MR 1378852, DOI 10.1016/0304-4149(95)00068-2
- A. Prékopa, A. Rényi, and K. Urbanik, \ifTeXMLРпÑеделÑном ÑаÑпÑеделении Ð´Ð»Ñ ÑÑмм незавиÑимÑÑ ÑлÑÑайнÑÑ Ð²ÐµÐ»Ð¸Ñин на бикомпакÑнÑÑ ÐºÐ¾Ð¼Ð¼ÑÑаÑивнÑÑ ÑопологиÑеÑÐºÐ¸Ñ Ð³ÑÑÐ¿Ð¿Ð°Ñ \else\textcyr{O predel′nom raspedelenii dlya summ nezavisimykh slucha\char"1A nykh velichin na bikompaktnykh kommutativnykh topologicheskikh gruppakh} (Russian, English summary), Acta Math. Acad. Sci. Hungar. 7 (1956), 11–16 (Title translation), On the limiting distribution of sums of independent random variables in bicompact commutative topological groups.
- Kenneth A. Ross and Daming Xu, Norm convergence of random walks on compact hypergroups, Math. Z. 214 (1993), no. 3, 415–423. MR 1245203, DOI 10.1007/BF02572414
- Karl Stromberg, Probabilities on a compact group, Trans. Amer. Math. Soc. 94 (1960), 295–309. MR 114874, DOI 10.1090/S0002-9947-1960-0114874-4
- K. Urbanik, On the limiting probability distribution on a compact topological group, Fund. Math. 44 (1957), 253–261. MR 92921, DOI 10.4064/fm-44-3-253-261
- S. R. S. Varadhan, Large deviations and applications, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 46, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1984. MR 758258, DOI 10.1137/1.9781611970241.bm
- Cédric Villani, Optimal transport, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338, Springer-Verlag, Berlin, 2009. Old and new. MR 2459454, DOI 10.1007/978-3-540-71050-9
- G. Vitali, Sui gruppi di punti e sulle funzioni di variabili reali (Italian), Atti Accad. Sci. Torino 43 (1908), 75–92 (Title translation), On groups of points and functions of real variables.
- Weiguo Yang, Convergence in the Cesàro sense and strong law of large numbers for nonhomogeneous Markov chains, Linear Algebra Appl. 354 (2002), 275–288. Ninth special issue on linear algebra and statistics. MR 1927662, DOI 10.1016/S0024-3795(02)00298-7
- Weiguo Yang, Strong law of large numbers for countable nonhomogeneous Markov chains, Linear Algebra Appl. 430 (2009), no. 11-12, 3008–3018. MR 2517854, DOI 10.1016/j.laa.2009.01.016
- Bei Wang, Zhiyan Shi, and Weiguo Yang, The strong law of large numbers for moving average of continuous state nonhomogeneous Markov chains, Stochastics 92 (2020), no. 5, 732–745. MR 4137062, DOI 10.1080/17442508.2019.1652608
Bibliographic Information
- Grigorii Monakov
- Affiliation: Department of Mathematics, University of California, Irvine, California 92697
- MR Author ID: 1453118
- Email: gmonakov@uci.edu
- Received by editor(s): August 28, 2023
- Received by editor(s) in revised form: February 14, 2024, and March 4, 2024
- Published electronically: July 1, 2024
- Additional Notes: The author was supported in part by NSF grant DMS–2247966.
- Communicated by: Katrin Gelfert
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 3855-3866
- MSC (2020): Primary 37H05, 37B05, 60J05
- DOI: https://doi.org/10.1090/proc/16848
- MathSciNet review: 4781979