Bounds for syzygies of monomial curves
HTML articles powered by AMS MathViewer
- by Giulio Caviglia, Alessio Moscariello and Alessio Sammartano;
- Proc. Amer. Math. Soc. 152 (2024), 3665-3678
- DOI: https://doi.org/10.1090/proc/16862
- Published electronically: July 26, 2024
- HTML | PDF | Request permission
Abstract:
Let $\Gamma \subseteq \mathbb {N}$ be a numerical semigroup. In this paper, we prove an upper bound for the Betti numbers of the semigroup ring of $\Gamma$ which depends only on the width of $\Gamma$, that is, the difference between the largest and the smallest generator of $\Gamma$. In this way, we make progress towards a conjecture of Herzog and Stamate [J. Algebra 418 (2014), pp. 8–28]. Moreover, for 4-generated numerical semigroups, the first significant open case, we prove the Herzog-Stamate bound for all but finitely many values of the width.References
- H. Bresinsky, On prime ideals with generic zero $x_{i}=t^{n_{i}}$, Proc. Amer. Math. Soc. 47 (1975), 329–332. MR 389912, DOI 10.1090/S0002-9939-1975-0389912-0
- Giulio Caviglia and Alessio Sammartano, Syzygies in Hilbert schemes of complete intersections, J. Algebra 619 (2023), 538–557. MR 4530814, DOI 10.1016/j.jalgebra.2022.12.015
- D. R. Grayson and M. E. Stillman, Macaulay 2, a software system for research in algebraic geometry, http://www.math.uiuc.edu/Macaulay2/.
- Jürgen Herzog, Generators and relations of abelian semigroups and semigroup rings, Manuscripta Math. 3 (1970), 175–193. MR 269762, DOI 10.1007/BF01273309
- JĂĽrgen Herzog and Takayuki Hibi, Monomial ideals, Graduate Texts in Mathematics, vol. 260, Springer-Verlag London, Ltd., London, 2011. MR 2724673, DOI 10.1007/978-0-85729-106-6
- Jürgen Herzog and Dumitru I. Stamate, On the defining equations of the tangent cone of a numerical semigroup ring, J. Algebra 418 (2014), 8–28. MR 3250438, DOI 10.1016/j.jalgebra.2014.07.008
- A. Moscariello and A. Sammartano, Open problems on relations of numerical semigroups, to appear in Recent Progress in Rings and Factorizations, eds. M. Bresar, A. Geroldinger, B. Olberding, and D. Smertnig, Springer, 2024.
- Keith Pardue, Deformation classes of graded modules and maximal Betti numbers, Illinois J. Math. 40 (1996), no. 4, 564–585. MR 1415019
- J. C. Rosales and P. A. GarcĂa-Sánchez, Numerical semigroups, Developments in Mathematics, vol. 20, Springer, New York, 2009. MR 2549780, DOI 10.1007/978-1-4419-0160-6
- G. Valla, On the Betti numbers of perfect ideals, Compositio Math. 91 (1994), no. 3, 305–319. MR 1273653
- Thanh Vu, Periodicity of Betti numbers of monomial curves, J. Algebra 418 (2014), 66–90. MR 3250441, DOI 10.1016/j.jalgebra.2014.07.007
Bibliographic Information
- Giulio Caviglia
- Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907-2067
- MR Author ID: 773758
- ORCID: 0000-0003-4530-0157
- Email: gcavigli@purdue.edu
- Alessio Moscariello
- Affiliation: Dipartimento di Matematica e Informatica, UniversitĂ degli Studi di Catania, Catania, Italy
- MR Author ID: 1092791
- ORCID: 0000-0001-8050-4281
- Email: alessio.moscariello@unict.it
- Alessio Sammartano
- Affiliation: Dipartimento di Matematica, Politecnico di Milano, Milan, Italy
- MR Author ID: 942872
- ORCID: 0000-0002-0377-1375
- Email: alessio.sammartano@polimi.it
- Received by editor(s): June 15, 2023
- Received by editor(s) in revised form: February 6, 2024
- Published electronically: July 26, 2024
- Additional Notes: The first author was partially supported by a grant from the Simons Foundation (41000748, G.C.). The second author was supported by the grant “Proprietà locali e globali di anelli e di varietà algebriche” PIACERI 2020-22, Università degli Studi di Catania. The third author was partially supported by the grant PRIN 2020355B8Y “Squarefree Gröner degenerations, special varieties and related topics” and by the INdAM - GNSAGA Project CUP E55F22000270001.
- Communicated by: Jerzy Weyman
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 3665-3678
- MSC (2020): Primary 13D02, 13F65; Secondary 05E40, 13F55, 20M14
- DOI: https://doi.org/10.1090/proc/16862
- MathSciNet review: 4781964