Optimizers of three-point energies and nearly orthogonal sets
HTML articles powered by AMS MathViewer
- by Dmitriy Bilyk, Damir Ferizović, Alexey Glazyrin, Ryan W. Matzke, Josiah Park and Oleksandr Vlasiuk;
- Proc. Amer. Math. Soc. 152 (2024), 4015-4033
- DOI: https://doi.org/10.1090/proc/16868
- Published electronically: July 31, 2024
- HTML | PDF | Request permission
Abstract:
This paper is devoted to spherical measures and point configurations optimizing three-point energies. Our main goal is to extend the classic optimization problems based on pairs of distances between points to the context of three-point potentials. In particular, we study three-point analogues of the sphere packing problem and the optimization problem for $p$-frame energies based on three points. It turns out that both problems are inherently connected to the problem of nearly orthogonal sets by Erdős. As the outcome, we provide a new solution of the Erdős problem from the three-point packing perspective. We also show that the orthogonal basis uniquely minimizes the $p$-frame three-point energy when $0<p<1$ in all dimensions. The arguments make use of multivariate polynomials employed in semidefinite programming and based on the classical Gegenbauer polynomials. For $p=1$, we completely solve the analogous problem on the circle. As for higher dimensions, we show that the Hausdorff dimension of minimizers is not greater than $d-2$ for measures on $\mathbb {S}^{d-1}$.References
- J. Aczél, Solution to problem 35, I (Hungarian). Mat. Lapok 3 (1952), 94–95.
- Noga Alon and Mario Szegedy, Large sets of nearly orthogonal vectors, Graphs Combin. 15 (1999), no. 1, 1–4. MR 1684496, DOI 10.1007/PL00021187
- C. Bachoc and M. Ehler, Tight $p$-fusion frames, Appl. Comput. Harmon. Anal. 35 (2013), no. 1, 1–15. MR 3053743, DOI 10.1016/j.acha.2012.07.001
- Christine Bachoc and Frank Vallentin, New upper bounds for kissing numbers from semidefinite programming, J. Amer. Math. Soc. 21 (2008), no. 3, 909–924. MR 2393433, DOI 10.1090/S0894-0347-07-00589-9
- Keith Ball, Volume ratios and a reverse isoperimetric inequality, J. London Math. Soc. (2) 44 (1991), no. 2, 351–359. MR 1136445, DOI 10.1112/jlms/s2-44.2.351
- Alexander Barg, Alexey Glazyrin, Kasso A. Okoudjou, and Wei-Hsuan Yu, Finite two-distance tight frames, Linear Algebra Appl. 475 (2015), 163–175. MR 3325226, DOI 10.1016/j.laa.2015.02.020
- R. Ben-Av, X. Chen, A. Goldberger, S. Kang, and K. A. Okoudjou, Phase transitions for the minimizers of the $p^{th}$ frame potentials in $\mathbb {R}^2$, Preprint, arXiv:2212.04444, 2022.
- Dmitriy Bilyk, Damir Ferizović, Alexey Glazyrin, Ryan W. Matzke, Josiah Park, and Oleksandr Vlasiuk, Potential theory with multivariate kernels, Math. Z. 301 (2022), no. 3, 2907–2935. MR 4437344, DOI 10.1007/s00209-022-03000-z
- D. Bilyk, D. Ferizović, A. Glazyrin, R. Matzke, J. Park, and O. Vlasiuk, Optimal measures for multivariate geometric potentials, Indiana Univ. Math. J. (to appear 2024), https://www.iumj.indiana.edu/IUMJ/Preprints/60289.pdf, last accessed 7/21/2024.
- Dmitriy Bilyk, Alexey Glazyrin, Ryan Matzke, Josiah Park, and Oleksandr Vlasiuk, Optimal measures for $p$-frame energies on spheres, Rev. Mat. Iberoam. 38 (2022), no. 4, 1129–1160. MR 4445910, DOI 10.4171/rmi/1329
- Dmitriy Bilyk, Alexey Glazyrin, Ryan Matzke, Josiah Park, and Oleksandr Vlasiuk, Energy on spheres and discreteness of minimizing measures, J. Funct. Anal. 280 (2021), no. 11, Paper No. 108995, 28. MR 4233399, DOI 10.1016/j.jfa.2021.108995
- John J. Benedetto and Matthew Fickus, Finite normalized tight frames, Adv. Comput. Math. 18 (2003), no. 2-4, 357–385. Frames. MR 1968126, DOI 10.1023/A:1021323312367
- Sergiy V. Borodachov, Douglas P. Hardin, and Edward B. Saff, Discrete energy on rectifiable sets, Springer Monographs in Mathematics, Springer, New York, [2019] ©2019. MR 3970999, DOI 10.1007/978-0-387-84808-2
- X. Chen, V. Gonzalez, E. Goodman, S. Kang, and K. A. Okoudjou, Universal optimal configurations for the $p$-frame potentials, Adv. Comput. Math. 46 (2020), no. 1, Paper No. 4, 22. MR 4057629, DOI 10.1007/s10444-020-09745-7
- Henry Cohn and Abhinav Kumar, Universally optimal distribution of points on spheres, J. Amer. Math. Soc. 20 (2007), no. 1, 99–148. MR 2257398, DOI 10.1090/S0894-0347-06-00546-7
- H. Davenport and Gy. Hajós, Problem 35 (Hungarian), Mat. Lapok 2 (1951), 68.
- Louis Deaett, The minimum semidefinite rank of a triangle-free graph, Linear Algebra Appl. 434 (2011), no. 8, 1945–1955. MR 2775783, DOI 10.1016/j.laa.2010.11.052
- B. V. Dekster, The Jung theorem for spherical and hyperbolic spaces, Acta Math. Hungar. 67 (1995), no. 4, 315–331. MR 1315815, DOI 10.1007/BF01874495
- P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. 10 (1973), vi+97. MR 384310
- M. Ehler and K. A. Okoudjou, Minimization of the probabilistic $p$-frame potential, J. Statist. Plann. Inference 142 (2012), no. 3, 645–659. MR 2853573, DOI 10.1016/j.jspi.2011.09.001
- A. Glazyrin, Moments of isotropic measures and optimal projective codes, Preprint, arXiv:1904.11159, 2019.
- Alexey Glazyrin and Josiah Park, Repeated minimizers of $p$-frame energies, SIAM J. Discrete Math. 34 (2020), no. 4, 2411–2423. MR 4175830, DOI 10.1137/19M1282702
- Masatake Hirao, On $p$-frame potentials of determinantal point processes on the sphere, JSIAM Lett. 13 (2021), 21–24. MR 4252568, DOI 10.14495/jsiaml.13.21
- Masatake Hirao, On $p$-frame potentials of the Beltrán and Etayo point processes on the sphere, JSIAM Lett. 15 (2023), 1–4. MR 4570003, DOI 10.14495/jsiaml.15.1
- Heinrich Jung, Ueber die kleinste Kugel, die eine räumliche Figur einschliesst, J. Reine Angew. Math. 123 (1901), 241–257 (German). MR 1580570, DOI 10.1515/crll.1901.123.241
- G. A. Kabatjanskiĭ and V. I. Levenšteĭn, Bounds for packings on the sphere and in space, Problemy Peredači Informacii 14 (1978), no. 1, 3–25 (Russian). MR 514023
- V. I. Levenšteĭn, Boundaries for packings in $n$-dimensional Euclidean space, Dokl. Akad. Nauk SSSR 245 (1979), no. 6, 1299–1303 (Russian). MR 529659
- Pertti Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. MR 1333890, DOI 10.1017/CBO9780511623813
- Oleg R. Musin, The kissing number in four dimensions, Ann. of Math. (2) 168 (2008), no. 1, 1–32. MR 2415397, DOI 10.4007/annals.2008.168.1
- A. M. Odlyzko and N. J. A. Sloane, New bounds on the number of unit spheres that can touch a unit sphere in $n$ dimensions, J. Combin. Theory Ser. A 26 (1979), no. 2, 210–214. MR 530296, DOI 10.1016/0097-3165(79)90074-8
- A. Polyanskii, On almost-equidistant sets, Linear Algebra Appl. 563 (2019), 220–230. MR 3873956, DOI 10.1016/j.laa.2018.11.005
- Pavel Pudlák, Cycles of nonzero elements in low rank matrices, Combinatorica 22 (2002), no. 2, 321–334. Special issue: Paul Erdős and his mathematics. MR 1909089, DOI 10.1007/s004930200015
- R. A. Rankin, The closest packing of spherical caps in $n$ dimensions, Proc. Glasgow Math. Assoc. 2 (1955), 139–144. MR 74013, DOI 10.1017/S2040618500033219
- Moshe Rosenfeld, Almost orthogonal lines in $E^d$, Applied geometry and discrete mathematics, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 4, Amer. Math. Soc., Providence, RI, 1991, pp. 489–492. MR 1116372, DOI 10.1090/dimacs/004/38
- K. Schütte and B. L. van der Waerden, Das Problem der dreizehn Kugeln, Math. Ann. 125 (1953), 325–334 (German). MR 53537, DOI 10.1007/BF01343127
- V. M. Sidel’nikov, New estimates for the closest packing of spheres in $n$-dimensional Euclidean space, Mat. Sb. 24 (1974), 148–158.
- T. Szele, Solution to problem 35, II (Hungarian), Mat. Lapok 3 (1952), 95.
- F. A. Toranzos, Radial functions of convex and star-shaped bodies, Amer. Math. Monthly 74 (1967), 278–280. MR 208469, DOI 10.2307/2316022
- L. Welch, Lower bounds on the maximum cross correlation of signals, IEEE Trans. Inform. Theory 20 (2006), 397–399.
- Clare Wickman and Kasso A. Okoudjou, Gradient flows for probabilistic frame potentials in the Wasserstein space, SIAM J. Math. Anal. 55 (2023), no. 3, 2324–2346. MR 4603681, DOI 10.1137/21M1425633
- Zhiqiang Xu and Zili Xu, The minimizers of the $p$-frame potential, Appl. Comput. Harmon. Anal. 52 (2021), 366–379. MR 4218427, DOI 10.1016/j.acha.2020.04.003
- V. A. Yudin, Minimum potential energy of a point system of charges, Diskret. Mat. 4 (1992), no. 2, 115–121 (Russian, with Russian summary); English transl., Discrete Math. Appl. 3 (1993), no. 1, 75–81. MR 1181534, DOI 10.1515/dma.1993.3.1.75
Bibliographic Information
- Dmitriy Bilyk
- Affiliation: School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
- MR Author ID: 757936
- Email: dbilyk@math.umn.edu
- Damir Ferizović
- Affiliation: Department of Mathematics, Katholieke Universiteit Leuven, Leuven, Belgium
- ORCID: 0000-0002-8147-4691
- Email: damir.ferizovic@kuleuven.be
- Alexey Glazyrin
- Affiliation: School of Mathematical & Statistical Sciences, The University of Texas Rio Grande Valley, Brownsville, Texas 78520
- MR Author ID: 865238
- ORCID: 0000-0002-6833-1469
- Email: alexey.glazyrin@utrgv.edu
- Ryan W. Matzke
- Affiliation: Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37240
- MR Author ID: 1115995
- ORCID: 0000-0001-8364-7237
- Email: ryan.w.matzke@vanderbilt.edu
- Josiah Park
- Affiliation: School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332
- Email: j.park@gatech.edu
- Oleksandr Vlasiuk
- Affiliation: Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37240
- MR Author ID: 1049198
- Email: oleksandr.vlasiuk@gmail.com
- Received by editor(s): March 21, 2023
- Received by editor(s) in revised form: January 23, 2024
- Published electronically: July 31, 2024
- Additional Notes: The first author was supported by the NSF grant DMS-2054606 and Simons Collaboration Grant 712810. The second author was supported by the Methusalem grant METH/21/03—long term structural funding of the Flemish Government. The third author was supported by the NSF grant DMS-2054536. The fourth author was supported by the Doctoral Dissertation Fellowship of the University of Minnesota, the Austrian Science Fund FWF project F5503 part of the Special Research Program (SFB) “Quasi-Monte Carlo Methods: Theory and Applications”, and NSF Postdoctoral Fellowship Grant 2202877. The sixth author was supported by an AMS-Simons Travel Grant.
- Communicated by: Yuan Xu
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 4015-4033
- MSC (2020): Primary 52C17, 90C22; Secondary 52A40, 05D05
- DOI: https://doi.org/10.1090/proc/16868
- MathSciNet review: 4781992