The strong Lefschetz property of Gorenstein algebras generated by relative invariants
HTML articles powered by AMS MathViewer
- by Takahiro Nagaoka and Akihito Wachi;
- Proc. Amer. Math. Soc. 152 (2024), 3635-3646
- DOI: https://doi.org/10.1090/proc/16870
- Published electronically: July 19, 2024
- HTML | PDF | Request permission
Abstract:
We prove the strong Lefschetz property for Artinian Gorenstein algebras generated by the relative invariants of prehomogeneous vector spaces of commutative parabolic type.References
- David H. Collingwood and William M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. MR 1251060
- Rodrigo Gondim, On higher Hessians and the Lefschetz properties, J. Algebra 489 (2017), 241–263. MR 3686979, DOI 10.1016/j.jalgebra.2017.06.030
- Rodrigo Gondim and Francesco Russo, On cubic hypersurfaces with vanishing hessian, J. Pure Appl. Algebra 219 (2015), no. 4, 779–806. MR 3282110, DOI 10.1016/j.jpaa.2014.04.030
- Rodrigo Gondim and Giuseppe Zappalà, Lefschetz properties for Artinian Gorenstein algebras presented by quadrics, Proc. Amer. Math. Soc. 146 (2018), no. 3, 993–1003. MR 3750213, DOI 10.1090/proc/13822
- Rodrigo Gondim and Giuseppe Zappalà, On mixed Hessians and the Lefschetz properties, J. Pure Appl. Algebra 223 (2019), no. 10, 4268–4282. MR 3958091, DOI 10.1016/j.jpaa.2019.01.008
- Tadahito Harima, Toshiaki Maeno, Hideaki Morita, Yasuhide Numata, Akihito Wachi, and Junzo Watanabe, The Lefschetz properties, Lecture Notes in Mathematics, vol. 2080, Springer, Heidelberg, 2013. MR 3112920, DOI 10.1007/978-3-642-38206-2
- Toshiaki Maeno and Yasuhide Numata, Sperner property and finite-dimensional Gorenstein algebras associated to matroids, J. Commut. Algebra 8 (2016), no. 4, 549–570. MR 3566530, DOI 10.1216/JCA-2016-8-4-549
- Toshiaki Maeno, Yasuhide Numata, and Akihito Wachi, Strong Lefschetz elements of the coinvariant rings of finite Coxeter groups, Algebr. Represent. Theory 14 (2011), no. 4, 625–638. MR 2817446, DOI 10.1007/s10468-010-9207-9
- Toshiaki Maeno and Junzo Watanabe, Lefschetz elements of Artinian Gorenstein algebras and Hessians of homogeneous polynomials, Illinois J. Math. 53 (2009), no. 2, 591–603. MR 2594646
- Iris Muller, Hubert Rubenthaler, and Gérard Schiffmann, Structure des espaces préhomogènes associés à certaines algèbres de Lie graduées, Math. Ann. 274 (1986), no. 1, 95–123 (French). MR 834108, DOI 10.1007/BF01458019
- Satoshi Murai, Takahiro Nagaoka, and Akiko Yazawa, Strictness of the log-concavity of generating polynomials of matroids, J. Combin. Theory Ser. A 181 (2021), Paper No. 105351, 22. MR 4223331, DOI 10.1016/j.jcta.2020.105351
- Takahiro Nagaoka and Akiko Yazawa, Strict log-concavity of the Kirchhoff polynomial and its applications, Sém. Lothar. Combin. 84B (2020), Art. 38, 12. MR 4138666
- Takahiro Nagaoka and Akiko Yazawa, Strict log-concavity of the Kirchhoff polynomial and its applications to the strong Lefschetz property, J. Algebra 577 (2021), 175–202. MR 4234203, DOI 10.1016/j.jalgebra.2021.01.037
- Hubert Rubenthaler, Algèbres de Lie et espaces préhomogènes, Travaux en Cours [Works in Progress], vol. 44, Hermann Éditeurs des Sciences et des Arts, Paris, 1992 (French). With a foreword by Jean-Michel Lemaire. MR 2412335
- Hubert Rubenthaler and Gérard Schiffmann, Opérateurs différentiels de Shimura et espaces préhomogènes, Invent. Math. 90 (1987), no. 2, 409–442 (French). MR 910208, DOI 10.1007/BF01388712
- M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1–155. MR 430336, DOI 10.1017/S0027763000017633
- Wilfried Schmid, Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen, Invent. Math. 9 (1969/70), 61–80 (German). MR 259164, DOI 10.1007/BF01389889
- È. B. Vinberg, The classification of nilpotent elements of graded Lie algebras, Dokl. Akad. Nauk SSSR 225 (1975), no. 4, 745–748 (Russian). MR 506488
- Akihito Wachi, Contravariant forms on generalized Verma modules and $b$-functions, Hiroshima Math. J. 29 (1999), no. 1, 193–225. MR 1679583
Bibliographic Information
- Takahiro Nagaoka
- Affiliation: Department of Mathematics, Graduate School of Science, Kyoto University, Kyoto, 606-8522 Japan
- MR Author ID: 1284981
- Akihito Wachi
- Affiliation: Department of Mathematics, Hokkaido University of Education, Kushiro 085-8580, Japan
- MR Author ID: 646624
- ORCID: 0009-0005-2010-0855
- Email: wachi.akihito@k.hokkyodai.ac.jp
- Received by editor(s): April 25, 2023
- Received by editor(s) in revised form: January 17, 2024
- Published electronically: July 19, 2024
- Additional Notes: This work was supported by JSPS KAKENHI Grant Numbers 22K03347, 20K03508.
- Communicated by: Jerzy Weyman
- © Copyright 2024 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 152 (2024), 3635-3646
- MSC (2020): Primary 13E10, 11S90, 17B10
- DOI: https://doi.org/10.1090/proc/16870
- MathSciNet review: 4781961